File size: 9,076 Bytes
35b4c0e cf55fa7 35b4c0e cf55fa7 03bdc59 35b4c0e 9784357 35b4c0e 9784357 35b4c0e 7cd24de 35b4c0e e67fd82 35b4c0e 8679092 35b4c0e 9bc1648 35b4c0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
#!/usr/bin/env python
import datetime
import operator
import pandas as pd
import tqdm.auto
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
from ragatouille import RAGPretrainedModel
import gradio as gr
from gradio_calendar import Calendar
import datasets
# --- Data Loading and Processing ---
api = HfApi()
INDEX_REPO_ID = "hysts-bot-data/daily-papers-abstract-index"
INDEX_DIR_PATH = ".ragatouille/colbert/indexes/daily-papers-abstract-index/"
api.snapshot_download(
repo_id=INDEX_REPO_ID,
repo_type="dataset",
local_dir=INDEX_DIR_PATH,
)
abstract_retriever = RAGPretrainedModel.from_index(INDEX_DIR_PATH)
# Run once to initialize the retriever
abstract_retriever.search("LLM")
def update_abstract_index() -> None:
global abstract_retriever
api.snapshot_download(
repo_id=INDEX_REPO_ID,
repo_type="dataset",
local_dir=INDEX_DIR_PATH,
)
abstract_retriever = RAGPretrainedModel.from_index(INDEX_DIR_PATH)
abstract_retriever.search("LLM")
scheduler_abstract = BackgroundScheduler()
scheduler_abstract.add_job(
func=update_abstract_index,
trigger="cron",
minute=0, # Every hour at minute 0
timezone="UTC",
misfire_grace_time=3 * 60,
)
scheduler_abstract.start()
def get_df() -> pd.DataFrame:
df = pd.merge(
left=datasets.load_dataset("hysts-bot-data/daily-papers", split="train").to_pandas(),
right=datasets.load_dataset("hysts-bot-data/daily-papers-stats", split="train").to_pandas(),
on="arxiv_id",
)
df = df[::-1].reset_index(drop=True)
df["date"] = df["date"].dt.strftime("%Y-%m-%d")
paper_info = []
for _, row in tqdm.auto.tqdm(df.iterrows(), total=len(df)):
info = row.copy()
del info["abstract"]
info["paper_page"] = f"https://huggingface.co/papers/{row.arxiv_id}"
paper_info.append(info)
return pd.DataFrame(paper_info)
class Prettifier:
@staticmethod
def get_github_link(link: str) -> str:
if not link:
return ""
return Prettifier.create_link("github", link)
@staticmethod
def create_link(text: str, url: str) -> str:
return f'<a href="{url}" target="_blank">{text}</a>'
@staticmethod
def to_div(text: str | None, category_name: str) -> str:
if text is None:
text = ""
class_name = f"{category_name}-{text.lower()}"
return f'<div class="{class_name}">{text}</div>'
def __call__(self, df: pd.DataFrame) -> pd.DataFrame:
new_rows = []
for _, row in df.iterrows():
new_row = {
"date": Prettifier.create_link(row.date, f"https://huggingface.co/papers?date={row.date}"),
"paper_page": Prettifier.create_link(row.arxiv_id, row.paper_page),
"title": row["title"],
"github": self.get_github_link(row.github),
"๐": row["upvotes"],
"๐ฌ": row["num_comments"],
}
new_rows.append(new_row)
return pd.DataFrame(new_rows)
class PaperList:
COLUMN_INFO = [
["date", "markdown"],
["paper_page", "markdown"],
["title", "str"],
["github", "markdown"],
["๐", "number"],
["๐ฌ", "number"],
]
def __init__(self, df: pd.DataFrame):
self.df_raw = df
self._prettifier = Prettifier()
self.df_prettified = self._prettifier(df).loc[:, self.column_names]
@property
def column_names(self):
return list(map(operator.itemgetter(0), self.COLUMN_INFO))
@property
def column_datatype(self):
return list(map(operator.itemgetter(1), self.COLUMN_INFO))
def search(
self,
start_date: datetime.datetime,
end_date: datetime.datetime,
title_search_query: str,
abstract_search_query: str,
max_num_to_retrieve: int,
) -> pd.DataFrame:
df = self.df_raw.copy()
df["date"] = pd.to_datetime(df["date"])
# Filter by date
df = df[(df["date"] >= start_date) & (df["date"] <= end_date)]
df["date"] = df["date"].dt.strftime("%Y-%m-%d")
# Filter by title
if title_search_query:
df = df[df["title"].str.contains(title_search_query, case=False)]
# Filter by abstract
if abstract_search_query:
results = abstract_retriever.search(abstract_search_query, k=max_num_to_retrieve)
remaining_ids = set(df["arxiv_id"])
found_id_set = set()
found_ids = []
for x in results:
arxiv_id = x["document_id"]
if arxiv_id not in remaining_ids:
continue
if arxiv_id in found_id_set:
continue
found_id_set.add(arxiv_id)
found_ids.append(arxiv_id)
df = df[df["arxiv_id"].isin(found_ids)].set_index("arxiv_id").reindex(index=found_ids).reset_index()
df_prettified = self._prettifier(df).loc[:, self.column_names]
return df_prettified
paper_list = PaperList(get_df())
def update_paper_list() -> None:
global paper_list
paper_list = PaperList(get_df())
scheduler_data = BackgroundScheduler()
scheduler_data.add_job(
func=update_paper_list,
trigger="cron",
minute=0, # Every hour at minute 0
timezone="UTC",
misfire_grace_time=60,
)
scheduler_data.start()
# --- Gradio App ---
DESCRIPTION = "# [Daily Papers](https://huggingface.co/papers)"
FOOT_NOTE = """\
Related useful Spaces:
- [Semantic Scholar Paper Recommender](https://huggingface.co/spaces/librarian-bots/recommend_similar_papers) by [davanstrien](https://huggingface.co/davanstrien)
- [ArXiv CS RAG](https://huggingface.co/spaces/bishmoy/Arxiv-CS-RAG) by [bishmoy](https://huggingface.co/bishmoy)
- [Paper Q&A](https://huggingface.co/spaces/chansung/paper_qa) by [chansung](https://huggingface.co/chansung)
"""
def update_df() -> pd.DataFrame:
return paper_list.df_prettified
def update_num_papers(df: pd.DataFrame) -> str:
return f"{len(df)} / {len(paper_list.df_raw)}"
def search(
start_date: datetime.datetime,
end_date: datetime.datetime,
search_title: str,
search_abstract: str,
max_num_to_retrieve: int,
) -> pd.DataFrame:
return paper_list.search(start_date, end_date, search_title, search_abstract, max_num_to_retrieve)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
search_title = gr.Textbox(label="Search title")
with gr.Row():
with gr.Column(scale=4):
search_abstract = gr.Textbox(
label="Search abstract",
info="The result may not be accurate as the abstract does not contain all the information.",
)
with gr.Column(scale=1):
max_num_to_retrieve = gr.Slider(
label="Max number to retrieve",
info="This is used only for search on abstracts.",
minimum=1,
maximum=len(paper_list.df_raw),
step=1,
value=100,
)
with gr.Row():
start_date = Calendar(label="Start date", type="date", value="2023-05-05")
end_date = Calendar(label="End date", type="date", value=datetime.datetime.utcnow().strftime("%Y-%m-%d"))
num_papers = gr.Textbox(label="Number of papers", value=update_num_papers(paper_list.df_raw), interactive=False)
df = gr.Dataframe(
value=paper_list.df_prettified,
datatype=paper_list.column_datatype,
type="pandas",
interactive=False,
height=1000,
elem_id="table",
column_widths=["10%", "10%", "60%", "10%", "5%", "5%"],
wrap=True,
)
gr.Markdown(FOOT_NOTE)
# Define the triggers and corresponding functions
search_event = gr.Button("Search")
search_event.click(
fn=search,
inputs=[start_date, end_date, search_title, search_abstract, max_num_to_retrieve],
outputs=df,
).then(
fn=update_num_papers,
inputs=df,
outputs=num_papers,
queue=False,
)
# Automatically trigger search when inputs change
for trigger in [start_date, end_date, search_title, search_abstract, max_num_to_retrieve]:
trigger.change(
fn=search,
inputs=[start_date, end_date, search_title, search_abstract, max_num_to_retrieve],
outputs=df,
).then(
fn=update_num_papers,
inputs=df,
outputs=num_papers,
queue=False,
)
# Load the initial dataframe and number of papers
demo.load(
fn=update_df,
outputs=df,
queue=False,
).then(
fn=update_num_papers,
inputs=df,
outputs=num_papers,
queue=False,
)
if __name__ == "__main__":
demo.queue(api_open=False).launch(show_api=False) |