File size: 18,131 Bytes
35b4c0e
 
 
 
 
 
 
 
 
 
cf55fa7
35b4c0e
 
4f9c2ea
35b4c0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f9c2ea
35b4c0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f9c2ea
35b4c0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f9c2ea
35b4c0e
 
 
 
 
 
 
 
4f9c2ea
35b4c0e
 
 
 
 
 
 
 
 
 
4f9c2ea
35b4c0e
 
 
 
 
 
 
 
 
cf55fa7
 
4f9c2ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35b4c0e
 
 
 
 
4f9c2ea
35b4c0e
4f9c2ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9784357
4f9c2ea
 
35b4c0e
4f9c2ea
7cd24de
4f9c2ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e67fd82
4f9c2ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8679092
4f9c2ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35b4c0e
4f9c2ea
 
 
 
 
35b4c0e
 
4f9c2ea
35b4c0e
 
 
 
4f9c2ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bc1648
35b4c0e
4f9c2ea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
#!/usr/bin/env python

import datetime
import operator
import pandas as pd
import tqdm.auto
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
from ragatouille import RAGPretrainedModel

import gradio as gr
from gradio_calendar import Calendar
import datasets
import requests

# --- Data Loading and Processing ---

api = HfApi()

INDEX_REPO_ID = "hysts-bot-data/daily-papers-abstract-index"
INDEX_DIR_PATH = ".ragatouille/colbert/indexes/daily-papers-abstract-index/"
api.snapshot_download(
    repo_id=INDEX_REPO_ID,
    repo_type="dataset",
    local_dir=INDEX_DIR_PATH,
)
abstract_retriever = RAGPretrainedModel.from_index(INDEX_DIR_PATH)
# Run once to initialize the retriever
abstract_retriever.search("LLM")


def update_abstract_index() -> None:
    global abstract_retriever

    api.snapshot_download(
        repo_id=INDEX_REPO_ID,
        repo_type="dataset",
        local_dir=INDEX_DIR_PATH,
    )
    abstract_retriever = RAGPretrainedModel.from_index(INDEX_DIR_PATH)
    abstract_retriever.search("LLM")


# Scheduler for updating abstract index every hour
scheduler_abstract = BackgroundScheduler()
scheduler_abstract.add_job(
    func=update_abstract_index,
    trigger="cron",
    minute=0,  # Every hour at minute 0
    timezone="UTC",
    misfire_grace_time=3 * 60,
)
scheduler_abstract.start()


def get_df() -> pd.DataFrame:
    df = pd.merge(
        left=datasets.load_dataset("hysts-bot-data/daily-papers", split="train").to_pandas(),
        right=datasets.load_dataset("hysts-bot-data/daily-papers-stats", split="train").to_pandas(),
        on="arxiv_id",
    )
    df = df[::-1].reset_index(drop=True)
    df["date"] = pd.to_datetime(df["date"]).dt.strftime("%Y-%m-%d")

    paper_info = []
    for _, row in tqdm.auto.tqdm(df.iterrows(), total=len(df)):
        info = row.copy()
        del info["abstract"]
        info["paper_page"] = f"https://huggingface.co/papers/{row.arxiv_id}"
        paper_info.append(info)
    return pd.DataFrame(paper_info)


class Prettifier:
    @staticmethod
    def get_github_link(link: str) -> str:
        if not link:
            return ""
        return Prettifier.create_link("github", link)

    @staticmethod
    def create_link(text: str, url: str) -> str:
        return f'<a href="{url}" target="_blank">{text}</a>'

    @staticmethod
    def to_div(text: str | None, category_name: str) -> str:
        if text is None:
            text = ""
        class_name = f"{category_name}-{text.lower()}"
        return f'<div class="{class_name}">{text}</div>'

    def __call__(self, df: pd.DataFrame) -> pd.DataFrame:
        new_rows = []
        for _, row in df.iterrows():
            new_row = {
                "date": Prettifier.create_link(row.date, f"https://huggingface.co/papers?date={row.date}"),
                "paper_page": Prettifier.create_link(row.arxiv_id, row.paper_page),
                "title": row["title"],
                "github": self.get_github_link(row.github),
                "๐Ÿ‘": row["upvotes"],
                "๐Ÿ’ฌ": row["num_comments"],
            }
            new_rows.append(new_row)
        return pd.DataFrame(new_rows)


class PaperList:
    COLUMN_INFO = [
        ["date", "markdown"],
        ["paper_page", "markdown"],
        ["title", "str"],
        ["github", "markdown"],
        ["๐Ÿ‘", "number"],
        ["๐Ÿ’ฌ", "number"],
    ]

    def __init__(self, df: pd.DataFrame):
        self.df_raw = df
        self._prettifier = Prettifier()
        self.df_prettified = self._prettifier(df).loc[:, self.column_names]

    @property
    def column_names(self):
        return list(map(operator.itemgetter(0), self.COLUMN_INFO))

    @property
    def column_datatype(self):
        return list(map(operator.itemgetter(1), self.COLUMN_INFO))

    def search(
        self,
        start_date: datetime.datetime,
        end_date: datetime.datetime,
        title_search_query: str,
        abstract_search_query: str,
        max_num_to_retrieve: int,
    ) -> pd.DataFrame:
        df = self.df_raw.copy()
        df["date"] = pd.to_datetime(df["date"])

        # Filter by date
        df = df[(df["date"] >= start_date) & (df["date"] <= end_date)]
        df["date"] = df["date"].dt.strftime("%Y-%m-%d")

        # Filter by title
        if title_search_query:
            df = df[df["title"].str.contains(title_search_query, case=False)]

        # Filter by abstract
        if abstract_search_query:
            results = abstract_retriever.search(abstract_search_query, k=max_num_to_retrieve)
            remaining_ids = set(df["arxiv_id"])
            found_id_set = set()
            found_ids = []
            for x in results:
                arxiv_id = x["document_id"]
                if arxiv_id not in remaining_ids:
                    continue
                if arxiv_id in found_id_set:
                    continue
                found_id_set.add(arxiv_id)
                found_ids.append(arxiv_id)
            df = df[df["arxiv_id"].isin(found_ids)].set_index("arxiv_id").reindex(index=found_ids).reset_index()

        df_prettified = self._prettifier(df).loc[:, self.column_names]
        return df_prettified


# Initialize PaperList
paper_list = PaperList(get_df())


def update_paper_list() -> None:
    global paper_list
    paper_list = PaperList(get_df())


# Scheduler for updating paper list every hour
scheduler_data = BackgroundScheduler()
scheduler_data.add_job(
    func=update_paper_list,
    trigger="cron",
    minute=0,  # Every hour at minute 0
    timezone="UTC",
    misfire_grace_time=60,
)
scheduler_data.start()


# --- Gradio App ---

DESCRIPTION = "# [Daily Papers](https://huggingface.co/papers)"

FOOT_NOTE = """\
Related useful Spaces:
- [Semantic Scholar Paper Recommender](https://huggingface.co/spaces/librarian-bots/recommend_similar_papers) by [davanstrien](https://huggingface.co/davanstrien)
- [ArXiv CS RAG](https://huggingface.co/spaces/bishmoy/Arxiv-CS-RAG) by [bishmoy](https://huggingface.co/bishmoy)
- [Paper Q&A](https://huggingface.co/spaces/chansung/paper_qa) by [chansung](https://huggingface.co/chansung)
"""

# --- Sorting and Pagination Management ---

class PaperManager:
    def __init__(self, paper_list: PaperList, papers_per_page=30):
        self.paper_list = paper_list
        self.papers_per_page = papers_per_page
        self.current_page = 1
        self.total_pages = max((len(self.paper_list.df_raw) + self.papers_per_page - 1) // self.papers_per_page, 1)
        self.sort_method = "hot"  # Default sort method

    def calculate_score(self, paper):
        """
        Calculate the score of a paper based on upvotes and age.
        This mimics the "hotness" algorithm used by platforms like Hacker News.
        """
        upvotes = paper.get('upvotes', 0)
        published_at_str = paper.get('date', datetime.datetime.now(timezone.utc).isoformat())
        try:
            published_time = datetime.datetime.fromisoformat(published_at_str.replace('Z', '+00:00'))
        except ValueError:
            # If parsing fails, use current time to minimize the impact on sorting
            published_time = datetime.datetime.now(datetime.timezone.utc)

        time_diff = datetime.datetime.now(datetime.timezone.utc) - published_time
        time_diff_hours = time_diff.total_seconds() / 3600  # Convert time difference to hours

        # Avoid division by zero and apply the hotness formula
        score = upvotes / ((time_diff_hours + 2) ** 1.5)
        return score

    def sort_papers(self):
        df = self.paper_list.df_raw.copy()

        if self.sort_method == "hot":
            df['score'] = df.apply(self.calculate_score, axis=1)
            df_sorted = df.sort_values(by='score', ascending=False).drop(columns=['score'])
        elif self.sort_method == "new":
            df_sorted = df.sort_values(by='date', ascending=False)
        else:
            df_sorted = df

        self.paper_list.df_raw = df_sorted.reset_index(drop=True)
        self.paper_list.df_prettified = self.paper_list._prettifier(self.paper_list.df_raw).loc[:, self.paper_list.column_names]
        self.total_pages = max((len(self.paper_list.df_raw) + self.papers_per_page - 1) // self.papers_per_page, 1)
        self.current_page = 1

    def set_sort_method(self, method):
        if method not in ["hot", "new"]:
            method = "hot"
        print(f"Setting sort method to: {method}")
        self.sort_method = method
        self.sort_papers()
        return True  # Assume success

    def get_current_page_papers(self):
        start = (self.current_page - 1) * self.papers_per_page
        end = start + self.papers_per_page
        current_papers = self.paper_list.df_prettified.iloc[start:end]
        return current_papers

    def next_page(self):
        if self.current_page < self.total_pages:
            self.current_page += 1
        return self.get_current_page_papers()

    def prev_page(self):
        if self.current_page > 1:
            self.current_page -= 1
        return self.get_current_page_papers()

    def refresh(self):
        self.sort_papers()
        return self.get_current_page_papers()


# Initialize PaperManager
paper_manager = PaperManager(paper_list)


def refresh_paper_manager():
    global paper_manager
    paper_manager = PaperManager(paper_list)
    if paper_manager.sort_method:
        paper_manager.sort_papers()
    return paper_manager.get_current_page_papers()


# --- Gradio Interface Functions ---

def update_num_papers(current_df: pd.DataFrame) -> str:
    return f"{len(current_df)} / {len(paper_manager.paper_list.df_raw)}"


def perform_search(
    start_date: datetime.datetime,
    end_date: datetime.datetime,
    search_title: str,
    search_abstract: str,
    max_num_to_retrieve: int,
    sort_method: str
) -> pd.DataFrame:
    # Update sort method
    paper_manager.set_sort_method(sort_method.lower())

    # Perform search
    searched_df = paper_manager.paper_list.search(start_date, end_date, search_title, search_abstract, max_num_to_retrieve)
    
    # Update PaperList with searched results
    paper_manager.paper_list.df_raw = searched_df.copy()
    paper_manager.paper_list.df_prettified = paper_manager.paper_list._prettifier(searched_df).loc[:, paper_manager.paper_list.column_names]
    paper_manager.total_pages = max((len(searched_df) + paper_manager.papers_per_page - 1) // paper_manager.papers_per_page, 1)
    paper_manager.current_page = 1

    # Apply sorting
    paper_manager.sort_papers()

    return paper_manager.get_current_page_papers()


def change_sort_method(method: str) -> pd.DataFrame:
    paper_manager.set_sort_method(method.lower())
    return paper_manager.get_current_page_papers()


def get_initial_papers() -> pd.DataFrame:
    return paper_manager.get_current_page_papers()


# --- CSS Styling ---

css = """
/* Existing CSS remains unchanged */
body {
    background-color: white;
    font-family: Verdana, Geneva, sans-serif;
    margin: 0;
    padding: 0;
}

a {
    color: #0000ff;
    text-decoration: none;
}

a:visited {
    color: #551A8B;
}

.container {
    width: 85%;
    margin: auto;
}

table {
    width: 100%;
}

.header-table {
    width: 100%;
    background-color: #ff6600;
    padding: 2px 10px;
}

.header-table a {
    color: black;
    font-weight: bold;
    font-size: 14pt;
    text-decoration: none;
}

.itemlist .athing {
    background-color: #f6f6ef;
}

.rank {
    font-size: 14pt;
    color: #828282;
    padding-right: 5px;
}

.storylink {
    font-size: 10pt;
}

.subtext {
    font-size: 8pt;
    color: #828282;
    padding-left: 40px;
}

.subtext a {
    color: #828282;
    text-decoration: none;
}

#refresh-button {
    background: none;
    border: none;
    color: black;
    font-weight: bold;
    font-size: 14pt;
    cursor: pointer;
}

.no-papers {
    text-align: center;
    color: #828282;
    padding: 1rem;
    font-size: 14pt;
}

@media (max-width: 640px) {
    .header-table a {
        font-size: 12pt;
    }

    .storylink {
        font-size: 9pt;
    }

    .subtext {
        font-size: 7pt;
    }
}

/* Dark mode */
@media (prefers-color-scheme: dark) {
    body {
        background-color: #121212;
        color: #e0e0e0;
    }

    a {
        color: #add8e6;
    }

    a:visited {
        color: #9370db;
    }

    .header-table {
        background-color: #ff6600;
    }

    .header-table a {
        color: black;
    }

    .itemlist .athing {
        background-color: #1e1e1e;
    }

    .rank {
        color: #b0b0b0;
    }

    .subtext {
        color: #b0b0b0;
    }

    .subtext a {
        color: #b0b0b0;
    }

    #refresh-button {
        color: #e0e0e0;
    }

    .no-papers {
        color: #b0b0b0;
    }
}
"""

# --- Initialize Gradio Blocks ---

demo = gr.Blocks(css=css)

with demo:
    with gr.Column(elem_classes=["container"]):
        # Accordion for Submission Instructions
        with gr.Accordion("How to Submit a Paper", open=False):
            gr.Markdown("""
            **Submit the paper to Daily Papers:**
            [https://huggingface.co/papers/submit](https://huggingface.co/papers/submit)

            Once your paper is submitted, it will automatically appear in this demo.
            """)

        # Header with Refresh Button
        with gr.Row():
            gr.HTML("""
            <table border="0" cellpadding="0" cellspacing="0" class="header-table">
                <tr>
                    <td>
                        <span class="pagetop">
                            <b class="hnname"><a href="#">Daily Papers</a></b>
                        </span>
                    </td>
                    <td align="right">
                        <button id="refresh-button">Refresh</button>
                    </td>
                </tr>
            </table>
            """)

        # Sorting Options
        with gr.Row():
            sort_radio = gr.Radio(
                choices=["Hot", "New"],
                value="Hot",
                label="Sort By",
                interactive=True
            )

        # Search and Filter Inputs
        with gr.Group():
            search_title = gr.Textbox(label="Search Title")
            with gr.Row():
                with gr.Column(scale=4):
                    search_abstract = gr.Textbox(
                        label="Search Abstract",
                        info="The result may not be accurate as the abstract does not contain all the information.",
                    )
                with gr.Column(scale=1):
                    max_num_to_retrieve = gr.Slider(
                        label="Max Number to Retrieve",
                        info="This is used only for search on abstracts.",
                        minimum=1,
                        maximum=1000,  # Adjust as needed
                        step=1,
                        value=100,
                    )
            with gr.Row():
                start_date = Calendar(label="Start Date", type="date", value="2023-05-05")
                end_date = Calendar(label="End Date", type="date", value=datetime.datetime.utcnow().strftime("%Y-%m-%d"))

            search_button = gr.Button("Search")

        # Number of Papers Display
        num_papers = gr.Textbox(label="Number of Papers", value=update_num_papers(paper_manager.get_current_page_papers()), interactive=False)

        # Paper List Display
        df_display = gr.DataFrame(
            value=paper_manager.get_current_page_papers(),
            datatype=paper_manager.paper_list.column_datatype,
            type="pandas",
            interactive=False,
            height=600,
            elem_id="table",
            column_widths=["10%", "10%", "60%", "10%", "5%", "5%"],
            wrap=True,
        )

        # Pagination Buttons
        with gr.Row():
            prev_button = gr.Button("Prev")
            next_button = gr.Button("Next")

        # Footer
        gr.Markdown(FOOT_NOTE)

        # Hidden Refresh Button
        refresh_button = gr.Button("Refresh", visible=False, elem_id="refresh-hidden")
        refresh_button.click(refresh_paper_manager, outputs=[df_display])

        # Bind the visible Refresh button to the hidden one using JavaScript
        gr.HTML("""
        <script>
        document.getElementById('refresh-button').addEventListener('click', function() {
            document.getElementById('refresh-hidden').click();
        });
        </script>
        """)

        # Event Handlers

        # Search Button Click
        search_button.click(
            fn=perform_search,
            inputs=[start_date, end_date, search_title, search_abstract, max_num_to_retrieve, sort_radio],
            outputs=[df_display],
        ).then(
            fn=update_num_papers,
            inputs=df_display,
            outputs=num_papers,
            queue=False,
        )

        # Sort Radio Change
        sort_radio.change(
            fn=change_sort_method,
            inputs=[sort_radio],
            outputs=[df_display],
        ).then(
            fn=update_num_papers,
            inputs=df_display,
            outputs=num_papers,
            queue=False,
        )

        # Pagination Buttons
        prev_button.click(
            fn=paper_manager.prev_page,
            inputs=None,
            outputs=[df_display],
        ).then(
            fn=update_num_papers,
            inputs=df_display,
            outputs=num_papers,
            queue=False,
        )

        next_button.click(
            fn=paper_manager.next_page,
            inputs=None,
            outputs=[df_display],
        ).then(
            fn=update_num_papers,
            inputs=df_display,
            outputs=num_papers,
            queue=False,
        )

        # Initial Load
        demo.load(
            fn=get_initial_papers,
            outputs=[df_display],
        ).then(
            fn=update_num_papers,
            inputs=df_display,
            outputs=num_papers,
            queue=False,
        )

# --- Launch the App ---

if __name__ == "__main__":
    demo.launch()