anycoder / app.py
akhaliq's picture
akhaliq HF Staff
update
f38f0e9
raw
history blame
20.5 kB
import os
import re
from http import HTTPStatus
from typing import Dict, List, Optional, Tuple
import base64
import gradio as gr
from huggingface_hub import InferenceClient
import modelscope_studio.components.base as ms
import modelscope_studio.components.legacy as legacy
import modelscope_studio.components.antd as antd
# Configuration
SystemPrompt = """You are a helpful coding assistant. You help users create applications by generating code based on their requirements.
When asked to create an application, you should:
1. Understand the user's requirements
2. Generate clean, working code
3. Provide HTML output when appropriate for web applications
4. Include necessary comments and documentation
5. Ensure the code is functional and follows best practices
If an image is provided, analyze it and use the visual information to better understand the user's requirements.
Always respond with code that can be executed or rendered directly.
Always output only the HTML code inside a ```html ... ``` code block, and do not include any explanations or extra text."""
# Available models
AVAILABLE_MODELS = [
{
"name": "DeepSeek V3",
"id": "deepseek-ai/DeepSeek-V3-0324",
"description": "DeepSeek V3 model for code generation"
},
{
"name": "DeepSeek R1",
"id": "deepseek-ai/DeepSeek-R1-0528",
"description": "DeepSeek R1 model for code generation"
},
{
"name": "ERNIE-4.5-VL",
"id": "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT",
"description": "ERNIE-4.5-VL model for multimodal code generation with image support"
}
]
DEMO_LIST = [
{
"title": "Todo App",
"description": "Create a simple todo application with add, delete, and mark as complete functionality"
},
{
"title": "Calculator",
"description": "Build a basic calculator with addition, subtraction, multiplication, and division"
},
{
"title": "Weather Dashboard",
"description": "Create a weather dashboard that displays current weather information"
},
{
"title": "Chat Interface",
"description": "Build a chat interface with message history and user input"
},
{
"title": "E-commerce Product Card",
"description": "Create a product card component for an e-commerce website"
},
{
"title": "Login Form",
"description": "Build a responsive login form with validation"
},
{
"title": "Dashboard Layout",
"description": "Create a dashboard layout with sidebar navigation and main content area"
},
{
"title": "Data Table",
"description": "Build a data table with sorting and filtering capabilities"
},
{
"title": "Image Gallery",
"description": "Create an image gallery with lightbox functionality and responsive grid layout"
},
{
"title": "UI from Image",
"description": "Upload an image of a UI design and I'll generate the HTML/CSS code for it"
}
]
# HF Inference Client
YOUR_API_TOKEN = os.getenv('HF_TOKEN')
client = InferenceClient(
provider="auto",
api_key=YOUR_API_TOKEN,
bill_to="huggingface"
)
History = List[Tuple[str, str]]
Messages = List[Dict[str, str]]
def history_to_messages(history: History, system: str) -> Messages:
messages = [{'role': 'system', 'content': system}]
for h in history:
# Handle multimodal content in history
user_content = h[0]
if isinstance(user_content, list):
# Extract text from multimodal content
text_content = ""
for item in user_content:
if isinstance(item, dict) and item.get("type") == "text":
text_content += item.get("text", "")
user_content = text_content if text_content else str(user_content)
messages.append({'role': 'user', 'content': user_content})
messages.append({'role': 'assistant', 'content': h[1]})
return messages
def messages_to_history(messages: Messages) -> Tuple[str, History]:
assert messages[0]['role'] == 'system'
history = []
for q, r in zip(messages[1::2], messages[2::2]):
# Extract text content from multimodal messages for history
user_content = q['content']
if isinstance(user_content, list):
text_content = ""
for item in user_content:
if isinstance(item, dict) and item.get("type") == "text":
text_content += item.get("text", "")
user_content = text_content if text_content else str(user_content)
history.append([user_content, r['content']])
return history
def remove_code_block(text):
# Try to match code blocks with language markers
patterns = [
r'```(?:html|HTML)\n([\s\S]+?)\n```', # Match ```html or ```HTML
r'```\n([\s\S]+?)\n```', # Match code blocks without language markers
r'```([\s\S]+?)```' # Match code blocks without line breaks
]
for pattern in patterns:
match = re.search(pattern, text, re.DOTALL)
if match:
extracted = match.group(1).strip()
return extracted
# If no code block is found, check if the entire text is HTML
if text.strip().startswith('<!DOCTYPE html>') or text.strip().startswith('<html'):
return text.strip()
return text.strip()
def history_render(history: History):
return gr.update(open=True), history
def clear_history():
return []
def update_image_input_visibility(model):
"""Update image input visibility based on selected model"""
is_ernie_vl = model.get("id") == "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT"
return gr.update(visible=is_ernie_vl)
def process_image_for_model(image):
"""Convert image to base64 for model input"""
if image is None:
return None
# Convert numpy array to PIL Image if needed
import io
import base64
import numpy as np
from PIL import Image
# Handle numpy array from Gradio
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
buffer = io.BytesIO()
image.save(buffer, format='PNG')
img_str = base64.b64encode(buffer.getvalue()).decode()
return f"data:image/png;base64,{img_str}"
def create_multimodal_message(text, image=None):
"""Create a multimodal message with text and optional image"""
if image is None:
return {"role": "user", "content": text}
content = [
{
"type": "text",
"text": text
},
{
"type": "image_url",
"image_url": {
"url": process_image_for_model(image)
}
}
]
return {"role": "user", "content": content}
def send_to_sandbox(code):
# Add a wrapper to inject necessary permissions and ensure full HTML
wrapped_code = f"""
<!DOCTYPE html>
<html>
<head>
<meta charset=\"UTF-8\">
<meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\">
<script>
// Safe localStorage polyfill
const safeStorage = {{
_data: {{}},
getItem: function(key) {{ return this._data[key] || null; }},
setItem: function(key, value) {{ this._data[key] = value; }},
removeItem: function(key) {{ delete this._data[key]; }},
clear: function() {{ this._data = {{}}; }}
}};
Object.defineProperty(window, 'localStorage', {{
value: safeStorage,
writable: false
}});
window.onerror = function(message, source, lineno, colno, error) {{
console.error('Error:', message);
}};
</script>
</head>
<body>
{code}
</body>
</html>
"""
encoded_html = base64.b64encode(wrapped_code.encode('utf-8')).decode('utf-8')
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
iframe = f'<iframe src="{data_uri}" width="100%" height="920px" sandbox="allow-scripts allow-same-origin allow-forms allow-popups allow-modals allow-presentation" allow="display-capture"></iframe>'
return iframe
def demo_card_click(e: gr.EventData):
try:
# Get the index from the event data
if hasattr(e, '_data') and e._data:
# Try different ways to get the index
if 'index' in e._data:
index = e._data['index']
elif 'component' in e._data and 'index' in e._data['component']:
index = e._data['component']['index']
elif 'target' in e._data and 'index' in e._data['target']:
index = e._data['target']['index']
else:
# If we can't get the index, try to extract it from the card data
index = 0
else:
index = 0
# Ensure index is within bounds
if index >= len(DEMO_LIST):
index = 0
return DEMO_LIST[index]['description']
except (KeyError, IndexError, AttributeError) as e:
# Return the first demo description as fallback
return DEMO_LIST[0]['description']
# Main application
with gr.Blocks(css_paths="app.css") as demo:
history = gr.State([])
setting = gr.State({
"system": SystemPrompt,
})
current_model = gr.State(AVAILABLE_MODELS[0]) # Default to first model
with ms.Application() as app:
with antd.ConfigProvider():
with antd.Row(gutter=[32, 12]) as layout:
with antd.Col(span=24, md=8):
with antd.Flex(vertical=True, gap="middle", wrap=True):
gr.LoginButton()
login_message = gr.Markdown("", visible=False)
header = gr.HTML("""
<div class="left_header">
<img src="https://huggingface.co/spaces/akhaliq/anycoder/resolve/main/Animated_Logo_Video_Ready.gif" width="200px" />
<h1>Hugging Face Coder</h1>
</div>
""")
current_model_display = gr.Markdown("**Current Model:** DeepSeek V3", visible=False)
input = antd.InputTextarea(
size="large", allow_clear=True, placeholder="Please enter what kind of application you want", visible=False)
image_input = gr.Image(label="Upload an image (only for ERNIE-4.5-VL model)", visible=False)
btn = antd.Button("send", type="primary", size="large", visible=False)
clear_btn = antd.Button("clear history", type="default", size="large", visible=False)
antd.Divider("examples", visible=False)
with antd.Flex(gap="small", wrap=True, visible=False) as examples_flex:
for i, demo_item in enumerate(DEMO_LIST):
with antd.Card(hoverable=True, title=demo_item["title"]) as demoCard:
antd.CardMeta(description=demo_item["description"])
demoCard.click(lambda e, idx=i: (DEMO_LIST[idx]['description'], None), outputs=[input, image_input])
antd.Divider("setting", visible=False)
with antd.Flex(gap="small", wrap=True, visible=False) as setting_flex:
settingPromptBtn = antd.Button(
"⚙️ set system Prompt", type="default", visible=False)
modelBtn = antd.Button("🤖 switch model", type="default", visible=False)
codeBtn = antd.Button("🧑‍💻 view code", type="default", visible=False)
historyBtn = antd.Button("📜 history", type="default", visible=False)
with antd.Modal(open=False, title="set system Prompt", width="800px") as system_prompt_modal:
systemPromptInput = antd.InputTextarea(
SystemPrompt, auto_size=True)
settingPromptBtn.click(lambda: gr.update(
open=True), inputs=[], outputs=[system_prompt_modal])
system_prompt_modal.ok(lambda input: ({"system": input}, gr.update(
open=False)), inputs=[systemPromptInput], outputs=[setting, system_prompt_modal])
system_prompt_modal.cancel(lambda: gr.update(
open=False), outputs=[system_prompt_modal])
with antd.Modal(open=False, title="Select Model", width="600px") as model_modal:
with antd.Flex(vertical=True, gap="middle"):
for i, model in enumerate(AVAILABLE_MODELS):
with antd.Card(hoverable=True, title=model["name"]) as modelCard:
antd.CardMeta(description=model["description"])
modelCard.click(lambda m=model: (m, gr.update(open=False), f"**Current Model:** {m['name']}", update_image_input_visibility(m)), outputs=[current_model, model_modal, current_model_display, image_input])
modelBtn.click(lambda: gr.update(open=True), inputs=[], outputs=[model_modal])
with antd.Drawer(open=False, title="code", placement="left", width="750px") as code_drawer:
code_output = legacy.Markdown()
codeBtn.click(lambda: gr.update(open=True),
inputs=[], outputs=[code_drawer])
code_drawer.close(lambda: gr.update(
open=False), inputs=[], outputs=[code_drawer])
with antd.Drawer(open=False, title="history", placement="left", width="900px") as history_drawer:
history_output = legacy.Chatbot(show_label=False, flushing=False, height=960, elem_classes="history_chatbot")
historyBtn.click(history_render, inputs=[history], outputs=[history_drawer, history_output])
history_drawer.close(lambda: gr.update(
open=False), inputs=[], outputs=[history_drawer])
with antd.Col(span=24, md=16):
with ms.Div(elem_classes="right_panel"):
gr.HTML('<div class="render_header"><span class="header_btn"></span><span class="header_btn"></span><span class="header_btn"></span></div>')
# Move sandbox outside of tabs for always-on visibility
sandbox = gr.HTML(elem_classes="html_content")
with antd.Tabs(active_key="empty", render_tab_bar="() => null") as state_tab:
with antd.Tabs.Item(key="empty"):
empty = antd.Empty(description="empty input", elem_classes="right_content")
with antd.Tabs.Item(key="loading"):
loading = antd.Spin(True, tip="coding...", size="large", elem_classes="right_content")
def update_login_ui(profile: gr.OAuthProfile | None):
if profile is None:
return (
gr.update(value="**You must sign in with Hugging Face to use this app.**", visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
else:
return (
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False), # Image input hidden by default (DeepSeek V3)
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
)
def generation_code(query: Optional[str], image: Optional[gr.Image], _setting: Dict[str, str], _history: Optional[History], profile: gr.OAuthProfile | None, _current_model: Dict):
if profile is None:
return (
"Please sign in with Hugging Face to use this feature.",
_history,
None,
gr.update(active_key="empty"),
gr.update(open=True),
)
if query is None:
query = ''
if _history is None:
_history = []
messages = history_to_messages(_history, _setting['system'])
# Create multimodal message if image is provided
if image is not None:
messages.append(create_multimodal_message(query, image))
else:
messages.append({'role': 'user', 'content': query})
try:
completion = client.chat.completions.create(
model=_current_model["id"],
messages=messages,
stream=True
)
content = ""
for chunk in completion:
if chunk.choices[0].delta.content:
content += chunk.choices[0].delta.content
yield {
code_output: content,
state_tab: gr.update(active_key="loading"),
code_drawer: gr.update(open=True),
}
# Final response
_history = messages_to_history(messages + [{
'role': 'assistant',
'content': content
}])
yield {
code_output: content,
history: _history,
sandbox: send_to_sandbox(remove_code_block(content)),
state_tab: gr.update(active_key="render"),
code_drawer: gr.update(open=False),
}
except Exception as e:
error_message = f"Error: {str(e)}"
yield {
code_output: error_message,
state_tab: gr.update(active_key="empty"),
code_drawer: gr.update(open=True),
}
btn.click(
generation_code,
inputs=[input, image_input, setting, history, current_model],
outputs=[code_output, history, sandbox, state_tab, code_drawer]
)
clear_btn.click(clear_history, inputs=[], outputs=[history])
demo.load(
update_login_ui,
inputs=None,
outputs=[
login_message,
input,
image_input,
current_model_display,
btn,
clear_btn,
examples_flex,
setting_flex,
settingPromptBtn,
modelBtn,
codeBtn,
historyBtn,
]
)
if __name__ == "__main__":
demo.queue(default_concurrency_limit=20).launch(ssr_mode=False)