Spaces:
Running
Running
File size: 18,119 Bytes
082d9d1 f695033 567736c 082d9d1 e287280 082d9d1 d142097 e287280 f4191a0 d142097 082d9d1 e287280 082d9d1 d142097 082d9d1 dc2cb0c 082d9d1 e287280 082d9d1 e287280 082d9d1 f38f0e9 e287280 082d9d1 60cb489 082d9d1 60cb489 082d9d1 60cb489 082d9d1 f4191a0 082d9d1 b33df83 f2e330c 082d9d1 f4191a0 082d9d1 a7d7982 f38f0e9 a7d7982 082d9d1 a7d7982 60cb489 e287280 082d9d1 a7d7982 082d9d1 a7d7982 082d9d1 d142097 f38f0e9 d142097 082d9d1 a7d7982 dbf5e27 e287280 082d9d1 dbf5e27 d142097 dbf5e27 ab29198 dbf5e27 082d9d1 dbf5e27 e287280 dbf5e27 082d9d1 16d456d a7d7982 c7dcb04 0a632f8 a9ade5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
import os
import re
from http import HTTPStatus
from typing import Dict, List, Optional, Tuple
import base64
import gradio as gr
from huggingface_hub import InferenceClient
import modelscope_studio.components.base as ms
import modelscope_studio.components.legacy as legacy
import modelscope_studio.components.antd as antd
# Configuration
SystemPrompt = """You are a helpful coding assistant. You help users create applications by generating code based on their requirements.
When asked to create an application, you should:
1. Understand the user's requirements
2. Generate clean, working code
3. Provide HTML output when appropriate for web applications
4. Include necessary comments and documentation
5. Ensure the code is functional and follows best practices
If an image is provided, analyze it and use the visual information to better understand the user's requirements.
Always respond with code that can be executed or rendered directly.
Always output only the HTML code inside a ```html ... ``` code block, and do not include any explanations or extra text."""
# Available models
AVAILABLE_MODELS = [
{
"name": "DeepSeek V3",
"id": "deepseek-ai/DeepSeek-V3-0324",
"description": "DeepSeek V3 model for code generation"
},
{
"name": "DeepSeek R1",
"id": "deepseek-ai/DeepSeek-R1-0528",
"description": "DeepSeek R1 model for code generation"
},
{
"name": "ERNIE-4.5-VL",
"id": "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT",
"description": "ERNIE-4.5-VL model for multimodal code generation with image support"
},
{
"name": "MiniMax M1",
"id": "MiniMaxAI/MiniMax-M1-80k",
"description": "MiniMax M1 model for code generation and general tasks"
}
]
DEMO_LIST = [
{
"title": "Todo App",
"description": "Create a simple todo application with add, delete, and mark as complete functionality"
},
{
"title": "Calculator",
"description": "Build a basic calculator with addition, subtraction, multiplication, and division"
},
{
"title": "Weather Dashboard",
"description": "Create a weather dashboard that displays current weather information"
},
{
"title": "Chat Interface",
"description": "Build a chat interface with message history and user input"
},
{
"title": "E-commerce Product Card",
"description": "Create a product card component for an e-commerce website"
},
{
"title": "Login Form",
"description": "Build a responsive login form with validation"
},
{
"title": "Dashboard Layout",
"description": "Create a dashboard layout with sidebar navigation and main content area"
},
{
"title": "Data Table",
"description": "Build a data table with sorting and filtering capabilities"
},
{
"title": "Image Gallery",
"description": "Create an image gallery with lightbox functionality and responsive grid layout"
},
{
"title": "UI from Image",
"description": "Upload an image of a UI design and I'll generate the HTML/CSS code for it"
}
]
# HF Inference Client
YOUR_API_TOKEN = os.getenv('HF_TOKEN')
client = InferenceClient(
provider="auto",
api_key=YOUR_API_TOKEN,
bill_to="huggingface"
)
History = List[Tuple[str, str]]
Messages = List[Dict[str, str]]
def history_to_messages(history: History, system: str) -> Messages:
messages = [{'role': 'system', 'content': system}]
for h in history:
# Handle multimodal content in history
user_content = h[0]
if isinstance(user_content, list):
# Extract text from multimodal content
text_content = ""
for item in user_content:
if isinstance(item, dict) and item.get("type") == "text":
text_content += item.get("text", "")
user_content = text_content if text_content else str(user_content)
messages.append({'role': 'user', 'content': user_content})
messages.append({'role': 'assistant', 'content': h[1]})
return messages
def messages_to_history(messages: Messages) -> Tuple[str, History]:
assert messages[0]['role'] == 'system'
history = []
for q, r in zip(messages[1::2], messages[2::2]):
# Extract text content from multimodal messages for history
user_content = q['content']
if isinstance(user_content, list):
text_content = ""
for item in user_content:
if isinstance(item, dict) and item.get("type") == "text":
text_content += item.get("text", "")
user_content = text_content if text_content else str(user_content)
history.append([user_content, r['content']])
return history
def remove_code_block(text):
# Try to match code blocks with language markers
patterns = [
r'```(?:html|HTML)\n([\s\S]+?)\n```', # Match ```html or ```HTML
r'```\n([\s\S]+?)\n```', # Match code blocks without language markers
r'```([\s\S]+?)```' # Match code blocks without line breaks
]
for pattern in patterns:
match = re.search(pattern, text, re.DOTALL)
if match:
extracted = match.group(1).strip()
return extracted
# If no code block is found, check if the entire text is HTML
if text.strip().startswith('<!DOCTYPE html>') or text.strip().startswith('<html'):
return text.strip()
return text.strip()
def history_render(history: History):
return gr.update(open=True), history
def clear_history():
return []
def update_image_input_visibility(model):
"""Update image input visibility based on selected model"""
is_ernie_vl = model.get("id") == "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT"
return gr.update(visible=is_ernie_vl)
def process_image_for_model(image):
"""Convert image to base64 for model input"""
if image is None:
return None
# Convert numpy array to PIL Image if needed
import io
import base64
import numpy as np
from PIL import Image
# Handle numpy array from Gradio
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
buffer = io.BytesIO()
image.save(buffer, format='PNG')
img_str = base64.b64encode(buffer.getvalue()).decode()
return f"data:image/png;base64,{img_str}"
def create_multimodal_message(text, image=None):
"""Create a multimodal message with text and optional image"""
if image is None:
return {"role": "user", "content": text}
content = [
{
"type": "text",
"text": text
},
{
"type": "image_url",
"image_url": {
"url": process_image_for_model(image)
}
}
]
return {"role": "user", "content": content}
def send_to_sandbox(code):
# Add a wrapper to inject necessary permissions and ensure full HTML
wrapped_code = f"""
<!DOCTYPE html>
<html>
<head>
<meta charset=\"UTF-8\">
<meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\">
<script>
// Safe localStorage polyfill
const safeStorage = {{
_data: {{}},
getItem: function(key) {{ return this._data[key] || null; }},
setItem: function(key, value) {{ this._data[key] = value; }},
removeItem: function(key) {{ delete this._data[key]; }},
clear: function() {{ this._data = {{}}; }}
}};
Object.defineProperty(window, 'localStorage', {{
value: safeStorage,
writable: false
}});
window.onerror = function(message, source, lineno, colno, error) {{
console.error('Error:', message);
}};
</script>
</head>
<body>
{code}
</body>
</html>
"""
encoded_html = base64.b64encode(wrapped_code.encode('utf-8')).decode('utf-8')
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
iframe = f'<iframe src="{data_uri}" width="100%" height="920px" sandbox="allow-scripts allow-same-origin allow-forms allow-popups allow-modals allow-presentation" allow="display-capture"></iframe>'
return iframe
def demo_card_click(e: gr.EventData):
try:
# Get the index from the event data
if hasattr(e, '_data') and e._data:
# Try different ways to get the index
if 'index' in e._data:
index = e._data['index']
elif 'component' in e._data and 'index' in e._data['component']:
index = e._data['component']['index']
elif 'target' in e._data and 'index' in e._data['target']:
index = e._data['target']['index']
else:
# If we can't get the index, try to extract it from the card data
index = 0
else:
index = 0
# Ensure index is within bounds
if index >= len(DEMO_LIST):
index = 0
return DEMO_LIST[index]['description']
except (KeyError, IndexError, AttributeError) as e:
# Return the first demo description as fallback
return DEMO_LIST[0]['description']
# Main application
with gr.Blocks(css_paths="app.css") as demo:
history = gr.State([])
setting = gr.State({
"system": SystemPrompt,
})
current_model = gr.State(AVAILABLE_MODELS[1]) # Default to DeepSeek R1 (second model)
with ms.Application() as app:
with antd.ConfigProvider():
with antd.Row(gutter=[32, 12]) as layout:
with antd.Col(span=24, md=8):
with antd.Flex(vertical=True, gap="middle", wrap=True):
header = gr.HTML("""
<div class="left_header">
<img src="https://huggingface.co/spaces/akhaliq/anycoder/resolve/main/Animated_Logo_Video_Ready.gif" width="200px" />
<h1>AnyCoder</h1>
</div>
""")
current_model_display = gr.Markdown("**Current Model:** DeepSeek R1")
input = antd.InputTextarea(
size="large", allow_clear=True, placeholder="Please enter what kind of application you want")
image_input = gr.Image(label="Upload an image (only for ERNIE-4.5-VL model)", visible=False)
btn = antd.Button("send", type="primary", size="large")
clear_btn = antd.Button("clear history", type="default", size="large")
antd.Divider("examples")
with antd.Flex(gap="small", wrap=True) as examples_flex:
for i, demo_item in enumerate(DEMO_LIST):
with antd.Card(hoverable=True, title=demo_item["title"]) as demoCard:
antd.CardMeta(description=demo_item["description"])
demoCard.click(lambda e, idx=i: (DEMO_LIST[idx]['description'], None), outputs=[input, image_input])
antd.Divider("setting")
with antd.Flex(gap="small", wrap=True) as setting_flex:
settingPromptBtn = antd.Button(
"βοΈ set system Prompt", type="default")
modelBtn = antd.Button("π€ switch model", type="default")
codeBtn = antd.Button("π§βπ» view code", type="default")
historyBtn = antd.Button("π history", type="default")
with antd.Modal(open=False, title="set system Prompt", width="800px") as system_prompt_modal:
systemPromptInput = antd.InputTextarea(
SystemPrompt, auto_size=True)
settingPromptBtn.click(lambda: gr.update(
open=True), inputs=[], outputs=[system_prompt_modal])
system_prompt_modal.ok(lambda input: ({"system": input}, gr.update(
open=False)), inputs=[systemPromptInput], outputs=[setting, system_prompt_modal])
system_prompt_modal.cancel(lambda: gr.update(
open=False), outputs=[system_prompt_modal])
with antd.Modal(open=False, title="Select Model", width="600px") as model_modal:
with antd.Flex(vertical=True, gap="middle"):
for i, model in enumerate(AVAILABLE_MODELS):
with antd.Card(hoverable=True, title=model["name"]) as modelCard:
antd.CardMeta(description=model["description"])
modelCard.click(lambda m=model: (m, gr.update(open=False), f"**Current Model:** {m['name']}", update_image_input_visibility(m)), outputs=[current_model, model_modal, current_model_display, image_input])
modelBtn.click(lambda: gr.update(open=True), inputs=[], outputs=[model_modal])
with antd.Drawer(open=False, title="code", placement="left", width="750px") as code_drawer:
code_output = legacy.Markdown()
codeBtn.click(lambda: gr.update(open=True),
inputs=[], outputs=[code_drawer])
code_drawer.close(lambda: gr.update(
open=False), inputs=[], outputs=[code_drawer])
with antd.Drawer(open=False, title="history", placement="left", width="900px") as history_drawer:
history_output = legacy.Chatbot(show_label=False, flushing=False, height=960, elem_classes="history_chatbot")
historyBtn.click(history_render, inputs=[history], outputs=[history_drawer, history_output])
history_drawer.close(lambda: gr.update(
open=False), inputs=[], outputs=[history_drawer])
with antd.Col(span=24, md=16):
with ms.Div(elem_classes="right_panel"):
gr.HTML('<div class="render_header"><span class="header_btn"></span><span class="header_btn"></span><span class="header_btn"></span></div>')
# Move sandbox outside of tabs for always-on visibility
sandbox = gr.HTML(elem_classes="html_content")
with antd.Tabs(active_key="empty", render_tab_bar="() => null") as state_tab:
with antd.Tabs.Item(key="empty"):
empty = antd.Empty(description="empty input", elem_classes="right_content")
with antd.Tabs.Item(key="loading"):
loading = antd.Spin(True, tip="coding...", size="large", elem_classes="right_content")
def generation_code(query: Optional[str], image: Optional[gr.Image], _setting: Dict[str, str], _history: Optional[History], _current_model: Dict):
if query is None:
query = ''
if _history is None:
_history = []
messages = history_to_messages(_history, _setting['system'])
# Create multimodal message if image is provided
if image is not None:
messages.append(create_multimodal_message(query, image))
else:
messages.append({'role': 'user', 'content': query})
try:
completion = client.chat.completions.create(
model=_current_model["id"],
messages=messages,
stream=True,
max_tokens=5000 # Higher max_tokens for more complete applications while maintaining reasonable speed
)
content = ""
for chunk in completion:
if chunk.choices[0].delta.content:
content += chunk.choices[0].delta.content
yield {
code_output: content,
state_tab: gr.update(active_key="loading"),
code_drawer: gr.update(open=True),
}
# Final response
_history = messages_to_history(messages + [{
'role': 'assistant',
'content': content
}])
yield {
code_output: content,
history: _history,
sandbox: send_to_sandbox(remove_code_block(content)),
state_tab: gr.update(active_key="render"),
code_drawer: gr.update(open=False),
}
except Exception as e:
error_message = f"Error: {str(e)}"
yield {
code_output: error_message,
state_tab: gr.update(active_key="empty"),
code_drawer: gr.update(open=True),
}
btn.click(
generation_code,
inputs=[input, image_input, setting, history, current_model],
outputs=[code_output, history, sandbox, state_tab, code_drawer]
)
clear_btn.click(clear_history, inputs=[], outputs=[history])
if __name__ == "__main__":
demo.queue(default_concurrency_limit=20).launch(ssr_mode=False) |