Spaces:
Runtime error
Runtime error
import os | |
os.system("pip install gradio==2.9b23") | |
import random | |
import gradio as gr | |
from PIL import Image | |
import torch | |
from random import randint | |
import sys | |
from subprocess import call | |
import psutil | |
# Remove the torch.hub download and instead ensure 'bear.jpg' is in your directory | |
# Place bear.jpg and anime.png in your project directory manually | |
def run_cmd(command): | |
try: | |
print(command) | |
call(command, shell=True) | |
except KeyboardInterrupt: | |
print("Process interrupted") | |
sys.exit(1) | |
# Download model weights if they don't exist | |
if not os.path.exists("RealESRGAN_x4plus.pth"): | |
run_cmd("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P .") | |
run_cmd("pip install basicsr") | |
if not os.path.exists("RealESRGAN_x4plus_anime_6B.pth"): | |
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P .") | |
def inference(img, mode): | |
_id = randint(1, 10000) | |
INPUT_DIR = f"/tmp/input_image{_id}/" | |
OUTPUT_DIR = f"/tmp/output_image{_id}/" | |
# Create directories safely | |
os.makedirs(INPUT_DIR, exist_ok=True) | |
os.makedirs(OUTPUT_DIR, exist_ok=True) | |
# Resize image | |
basewidth = 256 | |
wpercent = (basewidth/float(img.size[0])) | |
hsize = int((float(img.size[1])*float(wpercent))) | |
img = img.resize((basewidth,hsize), Image.LANCZOS) | |
input_path = os.path.join(INPUT_DIR, "1.jpg") | |
img.save(input_path, "JPEG") | |
if mode == "base": | |
model_name = "RealESRGAN_x4plus" | |
else: | |
model_name = "RealESRGAN_x4plus_anime_6B" | |
command = f"python inference_realesrgan.py -n {model_name} -i {INPUT_DIR} -o {OUTPUT_DIR}" | |
run_cmd(command) | |
output_path = os.path.join(OUTPUT_DIR, "1_out.jpg") | |
# Cleanup temporary directories | |
try: | |
if os.path.exists(INPUT_DIR): | |
os.system(f"rm -rf {INPUT_DIR}") | |
if os.path.exists(OUTPUT_DIR): | |
os.system(f"rm -rf {OUTPUT_DIR}") | |
except Exception as e: | |
print(f"Cleanup error: {e}") | |
return output_path | |
title = "Real-ESRGAN" | |
description = "Gradio demo for Real-ESRGAN. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please click submit only once" | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2107.10833'>Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data</a> | <a href='https://github.com/xinntao/Real-ESRGAN'>Github Repo</a></p>" | |
# Create interface | |
interface = gr.Interface( | |
inference, | |
[ | |
gr.inputs.Image(type="pil", label="Input"), | |
gr.inputs.Radio(["base", "anime"], type="value", default="base", label="model type") | |
], | |
gr.outputs.Image(type="file", label="Output"), | |
title=title, | |
description=description, | |
article=article, | |
examples=[ | |
['bear.jpg', 'base'], | |
['anime.png', 'anime'] | |
] | |
) | |
# Launch the interface | |
interface.launch() |