Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,70 +8,47 @@ model_id = "facebook/MobileLLM-R1-950M"
|
|
| 8 |
pipe = pipeline(
|
| 9 |
"text-generation",
|
| 10 |
model=model_id,
|
| 11 |
-
torch_dtype=
|
| 12 |
device_map="auto",
|
| 13 |
)
|
| 14 |
|
| 15 |
@spaces.GPU(duration=120)
|
| 16 |
def respond(message, history):
|
| 17 |
-
# Build
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
# Add system message based on content type detection
|
| 21 |
-
if any(kw in message.lower() for kw in ["python", "def ", "function"]):
|
| 22 |
-
messages.append({
|
| 23 |
-
"role": "system",
|
| 24 |
-
"content": (
|
| 25 |
-
"\nYou are a helpful and harmless assistant. You should think step-by-step before responding to the instruction below.\n\n"
|
| 26 |
-
"Please use python programming language only.\n"
|
| 27 |
-
"You must use ```python for just the final solution code block with the following format:\n"
|
| 28 |
-
"```python\n# Your code here\n```\n"
|
| 29 |
-
)
|
| 30 |
-
})
|
| 31 |
-
elif any(kw in message.lower() for kw in ["c++", "cpp", "#include", "cout"]):
|
| 32 |
-
messages.append({
|
| 33 |
-
"role": "system",
|
| 34 |
-
"content": (
|
| 35 |
-
"\nYou are a helpful and harmless assistant. You should think step-by-step before responding to the instruction below.\n\n"
|
| 36 |
-
"Please use c++ programming language only.\n"
|
| 37 |
-
"You must use ```cpp for just the final solution code block with the following format:\n"
|
| 38 |
-
"```cpp\n// Your code here\n```\n"
|
| 39 |
-
)
|
| 40 |
-
})
|
| 41 |
-
elif any(kw in message.lower() for kw in ["compute", "calculate", "math", "+", "-", "*", "/"]):
|
| 42 |
-
messages.append({
|
| 43 |
-
"role": "system",
|
| 44 |
-
"content": "Please reason step by step, and put your final answer within \\boxed{}."
|
| 45 |
-
})
|
| 46 |
-
else:
|
| 47 |
-
messages.append({
|
| 48 |
-
"role": "system",
|
| 49 |
-
"content": "You are a helpful AI assistant."
|
| 50 |
-
})
|
| 51 |
-
|
| 52 |
-
# Add conversation history
|
| 53 |
for user_msg, assistant_msg in history:
|
| 54 |
if user_msg:
|
| 55 |
-
|
| 56 |
if assistant_msg:
|
| 57 |
-
|
| 58 |
|
| 59 |
# Add current message
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
#
|
| 63 |
-
|
| 64 |
-
messages,
|
| 65 |
-
max_new_tokens=8192,
|
| 66 |
-
temperature=0.7,
|
| 67 |
-
do_sample=True,
|
| 68 |
-
)
|
| 69 |
|
| 70 |
-
#
|
| 71 |
-
full_response = outputs[0]["generated_text"][-1]["content"]
|
| 72 |
response_text = ""
|
| 73 |
-
for
|
| 74 |
-
|
|
|
|
|
|
|
| 75 |
yield response_text
|
| 76 |
|
| 77 |
# Create the chat interface
|
|
|
|
| 8 |
pipe = pipeline(
|
| 9 |
"text-generation",
|
| 10 |
model=model_id,
|
| 11 |
+
torch_dtype=torch.float16,
|
| 12 |
device_map="auto",
|
| 13 |
)
|
| 14 |
|
| 15 |
@spaces.GPU(duration=120)
|
| 16 |
def respond(message, history):
|
| 17 |
+
# Build prompt from history
|
| 18 |
+
prompt = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
for user_msg, assistant_msg in history:
|
| 20 |
if user_msg:
|
| 21 |
+
prompt += f"User: {user_msg}\n"
|
| 22 |
if assistant_msg:
|
| 23 |
+
prompt += f"Assistant: {assistant_msg}\n"
|
| 24 |
|
| 25 |
# Add current message
|
| 26 |
+
prompt += f"User: {message}\nAssistant: "
|
| 27 |
+
|
| 28 |
+
# Generate response with streaming
|
| 29 |
+
streamer = pipe.tokenizer.decode
|
| 30 |
+
|
| 31 |
+
# Generate tokens
|
| 32 |
+
inputs = pipe.tokenizer(prompt, return_tensors="pt").to(pipe.model.device)
|
| 33 |
+
|
| 34 |
+
with torch.no_grad():
|
| 35 |
+
outputs = pipe.model.generate(
|
| 36 |
+
**inputs,
|
| 37 |
+
max_new_tokens=10000,
|
| 38 |
+
temperature=0.7,
|
| 39 |
+
do_sample=True,
|
| 40 |
+
pad_token_id=pipe.tokenizer.eos_token_id,
|
| 41 |
+
)
|
| 42 |
|
| 43 |
+
# Decode the generated tokens, skipping the input tokens
|
| 44 |
+
generated_tokens = outputs[0][inputs['input_ids'].shape[-1]:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
# Stream the output token by token
|
|
|
|
| 47 |
response_text = ""
|
| 48 |
+
for i in range(len(generated_tokens)):
|
| 49 |
+
token = generated_tokens[i:i+1]
|
| 50 |
+
token_text = pipe.tokenizer.decode(token, skip_special_tokens=True)
|
| 51 |
+
response_text += token_text
|
| 52 |
yield response_text
|
| 53 |
|
| 54 |
# Create the chat interface
|