Spaces:
Runtime error
Runtime error
File size: 2,462 Bytes
ff27b25 2b533d9 fcdedfa 5e8cde2 099b4a7 ff27b25 5e8cde2 ff27b25 842f5b3 c5a1723 ff27b25 2b533d9 723aec0 ff27b25 fcdedfa ff27b25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import os
import random
import gradio as gr
from PIL import Image
import torch
from random import randint
import sys
from subprocess import call
import psutil
torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg', 'lincoln.jpg')
torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/5/50/Albert_Einstein_%28Nobel%29.png', 'einstein.png')
os.system("pip install gfpgan")
os.system("pip freeze")
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth -P .")
def run_cmd(command):
try:
print(command)
call(command, shell=True)
except KeyboardInterrupt:
print("Process interrupted")
sys.exit(1)
def inference(img):
_id = randint(1, 10000)
INPUT_DIR = "/tmp/input_image" + str(_id) + "/"
OUTPUT_DIR = "/tmp/output_image" + str(_id) + "/"
run_cmd("rm -rf " + INPUT_DIR)
run_cmd("rm -rf " + OUTPUT_DIR)
run_cmd("mkdir " + INPUT_DIR)
run_cmd("mkdir " + OUTPUT_DIR)
basewidth = 256
wpercent = (basewidth/float(img.size[0]))
hsize = int((float(img.size[1])*float(wpercent)))
img = img.resize((basewidth,hsize), Image.ANTIALIAS)
img.save(INPUT_DIR + "1.jpg", "JPEG")
run_cmd("python inference_gfpgan.py --upscale 2 --test_path "+ INPUT_DIR + " --save_root " + OUTPUT_DIR + " --paste_back")
return os.path.join(OUTPUT_DIR, "1_00.png")
title = "GFP-GAN"
description = "Gradio demo for GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please click submit only once"
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2101.04061'>Towards Real-World Blind Face Restoration with Generative Facial Prior</a> | <a href='https://github.com/TencentARC/GFPGAN'>Github Repo</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>"
gr.Interface(
inference,
[gr.inputs.Image(type="pil", label="Input")],
gr.outputs.Image(type="file", label="Output"),
title=title,
description=description,
article=article,
examples=[
['lincoln.jpg'],
['einstein.png']
],
enable_queue=True
).launch(debug=True) |