akhaliq's picture
akhaliq HF Staff
Update app.py
fc5bd53 verified
raw
history blame
19.2 kB
import gradio as gr
import numpy as np
import random
import os
import base64
import requests
import time
import io
from PIL import Image, ImageOps
import pillow_heif # For HEIF/AVIF support
# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max
API_URL = "https://router.huggingface.co/fal-ai/fal-ai/flux-kontext/dev?_subdomain=queue"
def get_headers():
"""Get headers for Hugging Face router API requests"""
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise gr.Error("HF_TOKEN environment variable not found. Please add your Hugging Face token to the Space settings.")
return {
"Authorization": f"Bearer {hf_token}",
"X-HF-Bill-To": "huggingface"
}
def query_api(payload, progress_callback=None):
"""Send request to the API and return response"""
headers = get_headers()
# Convert image to base64 if it's bytes
if "image_bytes" in payload:
payload["inputs"] = base64.b64encode(payload["image_bytes"]).decode("utf-8")
del payload["image_bytes"]
# Submit the job
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code != 200:
raise gr.Error(f"API request failed with status {response.status_code}: {response.text}")
# Debug the response
print(f"Response status: {response.status_code}")
print(f"Response headers: {dict(response.headers)}")
print(f"Response content type: {response.headers.get('content-type', 'unknown')}")
print(f"Response content length: {len(response.content)}")
print(f"First 500 chars of response: {response.content[:500]}")
# Check if response is JSON (queue status) or binary (direct image)
content_type = response.headers.get('content-type', '').lower()
if 'application/json' in content_type:
# Response is JSON, likely queue status
try:
json_response = response.json()
print(f"JSON response: {json_response}")
# Check if job was queued
if json_response.get("status") == "IN_QUEUE":
request_id = json_response.get("request_id")
if not request_id:
raise gr.Error("No request_id provided in queue response")
# Poll for completion using the proper HF router endpoints
max_attempts = 60 # Wait up to 5 minutes
attempt = 0
while attempt < max_attempts:
if progress_callback:
progress_callback(0.1 + (attempt / max_attempts) * 0.8, f"Processing... (attempt {attempt + 1}/60)")
time.sleep(5) # Wait 5 seconds between polls
# Check status using HF router format
status_url = f"https://router.huggingface.co/fal-ai/fal-ai/flux-kontext/dev/requests/{request_id}/status"
status_response = requests.get(status_url, headers=headers)
if status_response.status_code != 200:
print(f"Status response: {status_response.status_code} - {status_response.text}")
# Continue polling even if status check fails temporarily
attempt += 1
continue
try:
status_data = status_response.json()
print(f"Status check {attempt + 1}: {status_data}")
if status_data.get("status") == "COMPLETED":
# Job completed, get the result
result_url = f"https://router.huggingface.co/fal-ai/fal-ai/flux-kontext/dev/requests/{request_id}"
result_response = requests.get(result_url, headers=headers)
if result_response.status_code != 200:
print(f"Result response: {result_response.status_code} - {result_response.text}")
raise gr.Error(f"Failed to get result: {result_response.status_code}")
# Check if result is direct image bytes or JSON
result_content_type = result_response.headers.get('content-type', '').lower()
if 'image/' in result_content_type:
# Direct image bytes
return result_response.content
else:
# Try to parse as JSON for image URL or base64
try:
result_data = result_response.json()
print(f"Result data: {result_data}")
# Look for images in various formats
if 'images' in result_data and len(result_data['images']) > 0:
image_info = result_data['images'][0]
if isinstance(image_info, dict) and 'url' in image_info:
# Download the image
img_response = requests.get(image_info['url'])
return img_response.content
elif isinstance(image_info, str):
# Base64 encoded
return base64.b64decode(image_info)
elif 'image' in result_data:
# Single image field
if isinstance(result_data['image'], str):
return base64.b64decode(result_data['image'])
else:
# Maybe it's direct image bytes
return result_response.content
except requests.exceptions.JSONDecodeError:
# Result might be direct image bytes
return result_response.content
elif status_data.get("status") == "FAILED":
error_msg = status_data.get("error", "Unknown error")
raise gr.Error(f"Job failed: {error_msg}")
# Still processing, continue polling
attempt += 1
except requests.exceptions.JSONDecodeError:
print("Failed to parse status response, continuing...")
attempt += 1
continue
raise gr.Error("Job timed out after 5 minutes")
elif json_response.get("status") == "COMPLETED":
# Job completed immediately
if 'images' in json_response and len(json_response['images']) > 0:
image_info = json_response['images'][0]
if isinstance(image_info, dict) and 'url' in image_info:
img_response = requests.get(image_info['url'])
return img_response.content
elif isinstance(image_info, str):
return base64.b64decode(image_info)
elif 'image' in json_response:
return base64.b64decode(json_response['image'])
else:
raise gr.Error(f"No images found in immediate response: {json_response}")
else:
raise gr.Error(f"Unexpected response status: {json_response.get('status', 'unknown')}")
except requests.exceptions.JSONDecodeError as e:
raise gr.Error(f"Failed to parse JSON response: {str(e)}")
elif 'image/' in content_type:
# Response is direct image bytes
return response.content
else:
# Unknown content type, try to handle as bytes
return response.content
def upload_image_to_fal(image_bytes):
"""Upload image to fal.ai and return the URL"""
# For now, we'll use base64 data URI as mentioned in the docs
# fal.ai supports base64 data URIs for image_url
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
# Detect image format
try:
img = Image.open(io.BytesIO(image_bytes))
format_map = {'JPEG': 'jpeg', 'PNG': 'png', 'WEBP': 'webp'}
img_format = format_map.get(img.format, 'jpeg')
except:
img_format = 'jpeg'
return f"data:image/{img_format};base64,{image_base64}"
"""Send request to the API and return response"""
hf_headers = get_headers()
# Submit the job
response = requests.post(API_URL, headers=hf_headers, json=payload)
if response.status_code != 200:
raise gr.Error(f"API request failed with status {response.status_code}: {response.text}")
# Parse the initial response
try:
json_response = response.json()
print(f"Initial response: {json_response}")
except:
raise gr.Error("Failed to parse initial API response as JSON")
# Check if job was queued
if json_response.get("status") == "IN_QUEUE":
status_url = json_response.get("status_url")
if not status_url:
raise gr.Error("No status URL provided in queue response")
# For fal.ai endpoints, we need different headers
fal_headers = get_fal_headers()
# Poll for completion
max_attempts = 60 # Wait up to 5 minutes (60 * 5 seconds)
attempt = 0
while attempt < max_attempts:
if progress_callback:
progress_callback(0.1 + (attempt / max_attempts) * 0.8, f"Processing... (attempt {attempt + 1}/60)")
time.sleep(5) # Wait 5 seconds between polls
# Check status with fal.ai headers
status_response = requests.get(status_url, headers=fal_headers)
if status_response.status_code != 200:
print(f"Status response: {status_response.status_code} - {status_response.text}")
raise gr.Error(f"Status check failed: {status_response.status_code}")
try:
status_data = status_response.json()
print(f"Status check {attempt + 1}: {status_data}")
if status_data.get("status") == "COMPLETED":
# Job completed, get the result
response_url = json_response.get("response_url")
if not response_url:
raise gr.Error("No response URL provided")
# Get result with fal.ai headers
result_response = requests.get(response_url, headers=fal_headers)
if result_response.status_code != 200:
print(f"Result response: {result_response.status_code} - {result_response.text}")
raise gr.Error(f"Failed to get result: {result_response.status_code}")
# Check if result is JSON with image data
try:
result_data = result_response.json()
print(f"Result data: {result_data}")
# Look for image in various possible fields
if 'images' in result_data and len(result_data['images']) > 0:
# Images array with URLs or base64
image_data = result_data['images'][0]
if isinstance(image_data, dict) and 'url' in image_data:
# Image URL - fetch it
img_response = requests.get(image_data['url'])
return img_response.content
elif isinstance(image_data, str):
# Assume base64
return base64.b64decode(image_data)
elif 'image' in result_data:
# Single image field
if isinstance(result_data['image'], str):
return base64.b64decode(result_data['image'])
elif 'url' in result_data:
# Direct URL
img_response = requests.get(result_data['url'])
return img_response.content
else:
raise gr.Error(f"No image found in result: {result_data}")
except requests.exceptions.JSONDecodeError:
# Result might be direct image bytes
return result_response.content
elif status_data.get("status") == "FAILED":
error_msg = status_data.get("error", "Unknown error")
raise gr.Error(f"Job failed: {error_msg}")
# Still processing, continue polling
attempt += 1
except requests.exceptions.JSONDecodeError:
raise gr.Error("Failed to parse status response")
raise gr.Error("Job timed out after 5 minutes")
elif json_response.get("status") == "COMPLETED":
# Job completed immediately
if 'images' in json_response and len(json_response['images']) > 0:
image_data = json_response['images'][0]
if isinstance(image_data, str):
return base64.b64decode(image_data)
elif 'image' in json_response:
return base64.b64decode(json_response['image'])
else:
raise gr.Error(f"No image found in immediate response: {json_response}")
else:
raise gr.Error(f"Unexpected response status: {json_response.get('status', 'unknown')}")
# --- Core Inference Function for ChatInterface ---
def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress()):
"""
Performs image generation or editing based on user input from the chat interface.
"""
# Register HEIF opener with PIL for AVIF/HEIF support
pillow_heif.register_heif_opener()
prompt = message["text"]
files = message["files"]
if not prompt and not files:
raise gr.Error("Please provide a prompt and/or upload an image.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Prepare the payload for Hugging Face router
payload = {
"parameters": {
"prompt": prompt,
"seed": seed,
"guidance_scale": guidance_scale,
"num_inference_steps": steps
}
}
if files:
print(f"Received image: {files[0]}")
try:
# Try to open and convert the image
input_image = Image.open(files[0])
# Convert to RGB if needed (handles RGBA, P, etc.)
if input_image.mode != "RGB":
input_image = input_image.convert("RGB")
# Auto-orient the image based on EXIF data
input_image = ImageOps.exif_transpose(input_image)
# Convert PIL image to bytes
img_byte_arr = io.BytesIO()
input_image.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
image_bytes = img_byte_arr.getvalue()
# Add image bytes to payload - will be converted to base64 in query_api
payload["image_bytes"] = image_bytes
except Exception as e:
raise gr.Error(f"Could not process the uploaded image: {str(e)}. Please try uploading a different image format (JPEG, PNG, WebP).")
progress(0.1, desc="Processing image...")
else:
print(f"Received prompt for text-to-image: {prompt}")
# For text-to-image, we don't need an input image
progress(0.1, desc="Generating image...")
try:
# Make API request with progress callback
image_bytes = query_api(payload, progress_callback=progress)
# Try to convert response bytes to PIL Image
try:
image = Image.open(io.BytesIO(image_bytes))
except Exception as img_error:
print(f"Failed to open image: {img_error}")
print(f"Image bytes type: {type(image_bytes)}, length: {len(image_bytes) if hasattr(image_bytes, '__len__') else 'unknown'}")
# Try to decode as base64 if direct opening failed
try:
decoded_bytes = base64.b64decode(image_bytes)
image = Image.open(io.BytesIO(decoded_bytes))
except:
raise gr.Error(f"Could not process API response as image. Response length: {len(image_bytes) if hasattr(image_bytes, '__len__') else 'unknown'}")
progress(1.0, desc="Complete!")
return gr.Image(value=image)
except gr.Error:
# Re-raise gradio errors as-is
raise
except Exception as e:
raise gr.Error(f"Failed to generate image: {str(e)}")
# --- UI Definition using gr.ChatInterface ---
seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_checkbox = gr.Checkbox(label="Randomize seed", value=False)
guidance_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=2.5)
steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1)
demo = gr.ChatInterface(
fn=chat_fn,
title="FLUX.1 Kontext [dev] - Hugging Face Router",
description="""<p style='text-align: center;'>
A simple chat UI for the <b>FLUX.1 Kontext [dev]</b> model using Hugging Face router.
<br>
To edit an image, upload it and type your instructions (e.g., "Add a hat", "Turn the cat into a tiger").
<br>
To generate an image, just type a prompt (e.g., "A photo of an astronaut on a horse").
<br>
Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>.
</p>""",
multimodal=True,
textbox=gr.MultimodalTextbox(
file_types=["image"],
placeholder="Type a prompt and/or upload an image...",
render=False
),
additional_inputs=[
seed_slider,
randomize_checkbox,
guidance_slider,
steps_slider
],
theme="soft"
)
if __name__ == "__main__":
demo.launch()