akhaliq's picture
akhaliq HF Staff
Update app.py
d6ceac3 verified
raw
history blame
9.87 kB
import gradio as gr
import numpy as np
import random
import os
import tempfile
from PIL import Image, ImageOps
import pillow_heif # For HEIF/AVIF support
import io
# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max
def load_client():
"""Initialize the Inference Client"""
# Register HEIF opener with PIL for AVIF/HEIF support
pillow_heif.register_heif_opener()
# Get token from environment variable
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise gr.Error("HF_TOKEN environment variable not found. Please add your Hugging Face token to the Space settings.")
return hf_token
def query_api(image_bytes, prompt, seed, guidance_scale, steps, progress_callback=None):
"""Send request to the API using HF Inference Client approach"""
import requests
import json
hf_token = load_client()
if progress_callback:
progress_callback(0.1, "Submitting request...")
# Prepare the request data similar to HF Inference Client
url = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-Kontext-dev"
headers = {
"Authorization": f"Bearer {hf_token}",
"Content-Type": "application/json",
"X-Use-Billing": "huggingface"
}
# Convert image to base64
import base64
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
payload = {
"inputs": image_base64,
"parameters": {
"prompt": prompt,
"seed": seed,
"guidance_scale": guidance_scale,
"num_inference_steps": steps
},
"options": {
"wait_for_model": True
}
}
if progress_callback:
progress_callback(0.3, "Processing request...")
try:
response = requests.post(url, headers=headers, json=payload, timeout=300)
if response.status_code != 200:
# Try alternative approach with fal-ai provider routing
alt_url = "https://router.huggingface.co/fal-ai/black-forest-labs/FLUX.1-Kontext-dev"
alt_headers = {
"Authorization": f"Bearer {hf_token}",
"X-HF-Bill-To": "huggingface",
"Content-Type": "application/json"
}
alt_payload = {
"inputs": image_base64,
"parameters": {
"prompt": prompt,
"seed": seed,
"guidance_scale": guidance_scale,
"num_inference_steps": steps
}
}
if progress_callback:
progress_callback(0.5, "Trying alternative routing...")
response = requests.post(alt_url, headers=alt_headers, json=alt_payload, timeout=300)
if response.status_code != 200:
raise gr.Error(f"API request failed with status {response.status_code}: {response.text}")
# Check if response is image bytes or JSON
content_type = response.headers.get('content-type', '').lower()
if 'image/' in content_type:
# Direct image response
if progress_callback:
progress_callback(1.0, "Complete!")
return response.content
elif 'application/json' in content_type:
# JSON response, might contain image URL or base64
try:
json_response = response.json()
print(f"JSON response: {json_response}")
# Handle different response formats
if 'images' in json_response and len(json_response['images']) > 0:
image_info = json_response['images'][0]
if isinstance(image_info, dict) and 'url' in image_info:
# Download image from URL
if progress_callback:
progress_callback(0.9, "Downloading result...")
img_response = requests.get(image_info['url'])
if progress_callback:
progress_callback(1.0, "Complete!")
return img_response.content
elif isinstance(image_info, str):
# Base64 encoded image
if progress_callback:
progress_callback(1.0, "Complete!")
return base64.b64decode(image_info)
elif 'image' in json_response:
# Single image field
if progress_callback:
progress_callback(1.0, "Complete!")
return base64.b64decode(json_response['image'])
else:
raise gr.Error(f"Unexpected JSON response format: {json_response}")
except Exception as e:
raise gr.Error(f"Failed to parse JSON response: {str(e)}")
else:
# Try to treat as image bytes
if len(response.content) > 1000: # Likely an image
if progress_callback:
progress_callback(1.0, "Complete!")
return response.content
else:
raise gr.Error(f"Unexpected response format. Content: {response.content[:500]}")
except requests.exceptions.Timeout:
raise gr.Error("Request timed out. Please try again.")
except requests.exceptions.RequestException as e:
raise gr.Error(f"Request failed: {str(e)}")
# --- Core Inference Function for ChatInterface ---
def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress()):
"""
Performs image generation or editing based on user input from the chat interface.
"""
prompt = message["text"]
files = message["files"]
if not prompt and not files:
raise gr.Error("Please provide a prompt and/or upload an image.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if files:
print(f"Received image: {files[0]}")
try:
# Try to open and convert the image
input_image = Image.open(files[0])
# Convert to RGB if needed (handles RGBA, P, etc.)
if input_image.mode != "RGB":
input_image = input_image.convert("RGB")
# Auto-orient the image based on EXIF data
input_image = ImageOps.exif_transpose(input_image)
# Convert PIL image to bytes
img_byte_arr = io.BytesIO()
input_image.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
image_bytes = img_byte_arr.getvalue()
except Exception as e:
raise gr.Error(f"Could not process the uploaded image: {str(e)}. Please try uploading a different image format (JPEG, PNG, WebP).")
progress(0.1, desc="Processing image...")
else:
# For text-to-image, we need a placeholder image or handle differently
# FLUX.1 Kontext is primarily an image-to-image model
raise gr.Error("This model (FLUX.1 Kontext) requires an input image. Please upload an image to edit.")
try:
# Make API request
result_bytes = query_api(image_bytes, prompt, seed, guidance_scale, steps, progress_callback=progress)
# Try to convert response bytes to PIL Image
try:
image = Image.open(io.BytesIO(result_bytes))
except Exception as img_error:
print(f"Failed to open image: {img_error}")
print(f"Image bytes type: {type(result_bytes)}, length: {len(result_bytes) if hasattr(result_bytes, '__len__') else 'unknown'}")
# Try to decode as base64 if direct opening failed
try:
import base64
decoded_bytes = base64.b64decode(result_bytes)
image = Image.open(io.BytesIO(decoded_bytes))
except:
raise gr.Error(f"Could not process API response as image. Response length: {len(result_bytes) if hasattr(result_bytes, '__len__') else 'unknown'}")
progress(1.0, desc="Complete!")
return gr.Image(value=image)
except gr.Error:
# Re-raise gradio errors as-is
raise
except Exception as e:
raise gr.Error(f"Failed to generate image: {str(e)}")
# --- UI Definition using gr.ChatInterface ---
seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_checkbox = gr.Checkbox(label="Randomize seed", value=False)
guidance_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=2.5)
steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1)
demo = gr.ChatInterface(
fn=chat_fn,
title="FLUX.1 Kontext [dev] - HF Inference Client",
description="""<p style='text-align: center;'>
A simple chat UI for the <b>FLUX.1 Kontext [dev]</b> model using Hugging Face Inference Client approach.
<br>
<b>Upload an image</b> and type your editing instructions (e.g., "Turn the cat into a tiger", "Add a hat").
<br>
This model specializes in understanding context and making precise edits to your images.
<br>
Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>.
</p>""",
multimodal=True,
textbox=gr.MultimodalTextbox(
file_types=["image"],
placeholder="Upload an image and type your editing instructions...",
render=False
),
additional_inputs=[
seed_slider,
randomize_checkbox,
guidance_slider,
steps_slider
],
theme="soft"
)
if __name__ == "__main__":
demo.launch()