akhaliq's picture
akhaliq HF Staff
Update app.py
642f1c7 verified
raw
history blame
3.81 kB
import gradio as gr
import numpy as np
import spaces
import torch
import random
import os
from PIL import Image
# Import the pipeline from diffusers
from diffusers import FluxKontextPipeline
# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max
# --- Global pipeline variable ---
pipe = None
def load_model():
"""Load the model on CPU first, then move to GPU when needed"""
global pipe
if pipe is None:
# Get token from environment variable
hf_token = os.getenv("HF_TOKEN")
if hf_token:
pipe = FluxKontextPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Kontext-dev",
torch_dtype=torch.bfloat16,
token=hf_token,
)
else:
raise gr.Error("HF_TOKEN environment variable not found. Please add your Hugging Face token to the Space settings.")
return pipe
# --- Core Inference Function for ChatInterface ---
@spaces.GPU(duration=120) # Set duration based on expected inference time
def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress(track_tqdm=True)):
"""
Performs image generation or editing based on user input from the chat interface.
"""
# Load and move model to GPU within the decorated function
pipe = load_model()
pipe = pipe.to("cuda")
prompt = message["text"]
files = message["files"]
if not prompt and not files:
raise gr.Error("Please provide a prompt and/or upload an image.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device="cuda").manual_seed(int(seed))
input_image = None
if files:
print(f"Received image: {files[0]}")
input_image = Image.open(files[0]).convert("RGB")
image = pipe(
image=input_image,
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=steps,
generator=generator,
).images[0]
else:
print(f"Received prompt for text-to-image: {prompt}")
image = pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=steps,
generator=generator,
).images[0]
# Move model back to CPU to free GPU memory
pipe = pipe.to("cpu")
torch.cuda.empty_cache()
return image
# --- UI Definition using gr.ChatInterface ---
seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_checkbox = gr.Checkbox(label="Randomize seed", value=False)
guidance_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=2.5)
steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1)
# --- Examples without external URLs ---
# Remove examples temporarily to avoid format issues
examples = None
demo = gr.ChatInterface(
fn=chat_fn,
title="FLUX.1 Kontext [dev]",
description="""<p style='text-align: center;'>
A simple chat UI for the <b>FLUX.1 Kontext</b> model running on ZeroGPU.
<br>
To edit an image, upload it and type your instructions (e.g., "Add a hat").
<br>
To generate an image, just type a prompt (e.g., "A photo of an astronaut on a horse").
<br>
Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>.
</p>""",
textbox=gr.MultimodalTextbox(
file_types=["image"],
placeholder="Type a prompt and/or upload an image...",
render=False
),
additional_inputs=[
seed_slider,
randomize_checkbox,
guidance_slider,
steps_slider
],
examples=examples,
theme="soft"
)
if __name__ == "__main__":
demo.launch()