File size: 15,618 Bytes
1bafe30
 
 
9231de3
f5f7379
 
0cea930
f5f7379
d1b130d
 
1bafe30
920a718
1bafe30
f5f7379
1bafe30
f5f7379
e1f8042
f5f7379
 
 
 
 
 
 
 
d1b130d
fc5bd53
17cc4e0
 
 
 
 
 
 
 
fc5bd53
fcf74fc
 
 
17cc4e0
 
 
 
 
fc5bd53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcf74fc
 
 
 
fc5bd53
fcf74fc
 
 
fc5bd53
fcf74fc
 
 
 
fc5bd53
 
 
 
 
 
fcf74fc
 
fc5bd53
 
 
fcf74fc
fc5bd53
 
 
 
fcf74fc
fc5bd53
 
 
 
 
 
 
 
 
fcf74fc
 
fc5bd53
 
 
fcf74fc
 
 
 
 
 
 
 
 
 
 
 
 
17cc4e0
e1f8042
 
 
 
 
 
 
 
 
 
 
 
 
 
f5f7379
e1f8042
0cea930
 
e1f8042
f5f7379
 
 
 
0cea930
 
 
 
 
 
c847b55
0cea930
 
 
 
 
 
e1f8042
 
 
0cea930
 
 
 
 
 
 
 
 
c847b55
e1f8042
 
0cea930
 
90342ab
0cea930
 
 
 
 
 
 
 
 
 
 
 
e1f8042
 
90342ab
0cea930
90342ab
0cea930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c847b55
0cea930
 
 
 
 
 
 
 
 
 
c847b55
 
0cea930
1bafe30
920a718
d1b130d
1bafe30
 
 
f5f7379
 
d1b130d
1bafe30
 
 
 
 
 
 
 
 
e1f8042
f5f7379
 
 
 
 
 
 
 
 
1bafe30
 
943caab
 
d1b130d
 
 
 
 
 
 
e1f8042
d1b130d
 
f5f7379
e1f8042
f5f7379
e1f8042
 
d1b130d
943caab
 
d1b130d
 
1bafe30
 
e1f8042
d1b130d
f5f7379
 
fc5bd53
 
f5f7379
90342ab
c847b55
 
 
90342ab
 
c847b55
 
 
 
 
 
90342ab
f5f7379
d1b130d
f5f7379
 
c847b55
 
 
f5f7379
 
1bafe30
 
 
 
 
 
 
 
 
 
e1f8042
1bafe30
e1f8042
1bafe30
e1f8042
1bafe30
 
 
 
 
d1b130d
1bafe30
 
 
9231de3
1bafe30
 
 
 
 
 
 
 
 
 
 
d1b130d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import gradio as gr
import numpy as np
import random
import os
import base64
import requests
import time
import io
from PIL import Image, ImageOps
import pillow_heif  # For HEIF/AVIF support

# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max
API_URL = "https://router.huggingface.co/fal-ai/fal-ai/flux-kontext/dev?_subdomain=queue"

def get_headers():
    """Get headers for Hugging Face router API requests"""
    hf_token = os.getenv("HF_TOKEN")
    if not hf_token:
        raise gr.Error("HF_TOKEN environment variable not found. Please add your Hugging Face token to the Space settings.")
    
    return {
        "Authorization": f"Bearer {hf_token}",
        "X-HF-Bill-To": "huggingface"
    }

def query_api(payload, progress_callback=None):
    """Send request to the API and return response"""
    headers = get_headers()
    
    # Convert image to base64 if it's bytes
    if "image_bytes" in payload:
        payload["inputs"] = base64.b64encode(payload["image_bytes"]).decode("utf-8")
        del payload["image_bytes"]
    
    # Submit the job
    if progress_callback:
        progress_callback(0.1, "Submitting request...")
    
    response = requests.post(API_URL, headers=headers, json=payload)
    
    if response.status_code != 200:
        raise gr.Error(f"API request failed with status {response.status_code}: {response.text}")
    
    # Debug the response
    print(f"Response status: {response.status_code}")
    print(f"Response content type: {response.headers.get('content-type', 'unknown')}")
    print(f"Response content length: {len(response.content)}")
    
    # Check if response is JSON (queue status) or binary (direct image)
    content_type = response.headers.get('content-type', '').lower()
    
    if 'application/json' in content_type:
        # Response is JSON, likely queue status
        try:
            json_response = response.json()
            print(f"JSON response: {json_response}")
            
            # Check if job was queued
            if json_response.get("status") == "IN_QUEUE":
                # For HF router, we should wait and let it handle the queue
                # The router should eventually return the result automatically
                if progress_callback:
                    progress_callback(0.5, "Processing in queue...")
                
                # Wait a bit and try to get the response again
                import time
                time.sleep(10)  # Wait 10 seconds for processing
                
                # Make another request to check if it's ready
                # But based on the error, we shouldn't poll manually
                # Instead, let's return an error asking user to try again
                raise gr.Error("Request is queued for processing. Please try again in a few moments.")
            
            elif json_response.get("status") == "COMPLETED":
                # Job completed immediately
                if 'images' in json_response and len(json_response['images']) > 0:
                    image_info = json_response['images'][0]
                    if isinstance(image_info, dict) and 'url' in image_info:
                        if progress_callback:
                            progress_callback(0.9, "Downloading result...")
                        img_response = requests.get(image_info['url'])
                        return img_response.content
                    elif isinstance(image_info, str):
                        # Base64 encoded image
                        return base64.b64decode(image_info)
                elif 'image' in json_response:
                    return base64.b64decode(json_response['image'])
                else:
                    raise gr.Error(f"No images found in response: {json_response}")
            
            else:
                raise gr.Error(f"Unexpected response status: {json_response.get('status', 'unknown')}")
                
        except requests.exceptions.JSONDecodeError as e:
            raise gr.Error(f"Failed to parse JSON response: {str(e)}")
    
    elif 'image/' in content_type:
        # Response is direct image bytes
        if progress_callback:
            progress_callback(1.0, "Complete!")
        return response.content
    
    else:
        # Unknown content type, but try to handle as image bytes
        # This might be the case where the router returns the image directly
        if len(response.content) > 1000:  # Likely an image if it's substantial
            if progress_callback:
                progress_callback(1.0, "Complete!")
            return response.content
        else:
            # Small response, probably an error
            try:
                error_response = response.json()
                raise gr.Error(f"API Error: {error_response}")
            except:
                raise gr.Error(f"Unexpected response: {response.content.decode()[:500]}")

def upload_image_to_fal(image_bytes):
    """Upload image to fal.ai and return the URL"""
    # For now, we'll use base64 data URI as mentioned in the docs
    # fal.ai supports base64 data URIs for image_url
    image_base64 = base64.b64encode(image_bytes).decode('utf-8')
    # Detect image format
    try:
        img = Image.open(io.BytesIO(image_bytes))
        format_map = {'JPEG': 'jpeg', 'PNG': 'png', 'WEBP': 'webp'}
        img_format = format_map.get(img.format, 'jpeg')
    except:
        img_format = 'jpeg'
    
    return f"data:image/{img_format};base64,{image_base64}"
    """Send request to the API and return response"""
    hf_headers = get_headers()
    
    # Submit the job
    response = requests.post(API_URL, headers=hf_headers, json=payload)
    
    if response.status_code != 200:
        raise gr.Error(f"API request failed with status {response.status_code}: {response.text}")
    
    # Parse the initial response
    try:
        json_response = response.json()
        print(f"Initial response: {json_response}")
    except:
        raise gr.Error("Failed to parse initial API response as JSON")
    
    # Check if job was queued
    if json_response.get("status") == "IN_QUEUE":
        status_url = json_response.get("status_url")
        if not status_url:
            raise gr.Error("No status URL provided in queue response")
        
        # For fal.ai endpoints, we need different headers
        fal_headers = get_fal_headers()
        
        # Poll for completion
        max_attempts = 60  # Wait up to 5 minutes (60 * 5 seconds)
        attempt = 0
        
        while attempt < max_attempts:
            if progress_callback:
                progress_callback(0.1 + (attempt / max_attempts) * 0.8, f"Processing... (attempt {attempt + 1}/60)")
            
            time.sleep(5)  # Wait 5 seconds between polls
            
            # Check status with fal.ai headers
            status_response = requests.get(status_url, headers=fal_headers)
            
            if status_response.status_code != 200:
                print(f"Status response: {status_response.status_code} - {status_response.text}")
                raise gr.Error(f"Status check failed: {status_response.status_code}")
            
            try:
                status_data = status_response.json()
                print(f"Status check {attempt + 1}: {status_data}")
                
                if status_data.get("status") == "COMPLETED":
                    # Job completed, get the result
                    response_url = json_response.get("response_url")
                    if not response_url:
                        raise gr.Error("No response URL provided")
                    
                    # Get result with fal.ai headers
                    result_response = requests.get(response_url, headers=fal_headers)
                    
                    if result_response.status_code != 200:
                        print(f"Result response: {result_response.status_code} - {result_response.text}")
                        raise gr.Error(f"Failed to get result: {result_response.status_code}")
                    
                    # Check if result is JSON with image data
                    try:
                        result_data = result_response.json()
                        print(f"Result data: {result_data}")
                        
                        # Look for image in various possible fields
                        if 'images' in result_data and len(result_data['images']) > 0:
                            # Images array with URLs or base64
                            image_data = result_data['images'][0]
                            if isinstance(image_data, dict) and 'url' in image_data:
                                # Image URL - fetch it
                                img_response = requests.get(image_data['url'])
                                return img_response.content
                            elif isinstance(image_data, str):
                                # Assume base64
                                return base64.b64decode(image_data)
                        elif 'image' in result_data:
                            # Single image field
                            if isinstance(result_data['image'], str):
                                return base64.b64decode(result_data['image'])
                        elif 'url' in result_data:
                            # Direct URL
                            img_response = requests.get(result_data['url'])
                            return img_response.content
                        else:
                            raise gr.Error(f"No image found in result: {result_data}")
                            
                    except requests.exceptions.JSONDecodeError:
                        # Result might be direct image bytes
                        return result_response.content
                        
                elif status_data.get("status") == "FAILED":
                    error_msg = status_data.get("error", "Unknown error")
                    raise gr.Error(f"Job failed: {error_msg}")
                
                # Still processing, continue polling
                attempt += 1
                
            except requests.exceptions.JSONDecodeError:
                raise gr.Error("Failed to parse status response")
    
        raise gr.Error("Job timed out after 5 minutes")
    
    elif json_response.get("status") == "COMPLETED":
        # Job completed immediately
        if 'images' in json_response and len(json_response['images']) > 0:
            image_data = json_response['images'][0]
            if isinstance(image_data, str):
                return base64.b64decode(image_data)
        elif 'image' in json_response:
            return base64.b64decode(json_response['image'])
        else:
            raise gr.Error(f"No image found in immediate response: {json_response}")
    
    else:
        raise gr.Error(f"Unexpected response status: {json_response.get('status', 'unknown')}")

# --- Core Inference Function for ChatInterface ---
def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress()):
    """
    Performs image generation or editing based on user input from the chat interface.
    """
    # Register HEIF opener with PIL for AVIF/HEIF support
    pillow_heif.register_heif_opener()
    
    prompt = message["text"]
    files = message["files"]

    if not prompt and not files:
        raise gr.Error("Please provide a prompt and/or upload an image.")

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    # Prepare the payload for Hugging Face router
    payload = {
        "parameters": {
            "prompt": prompt,
            "seed": seed,
            "guidance_scale": guidance_scale,
            "num_inference_steps": steps
        }
    }

    if files:
        print(f"Received image: {files[0]}")
        try:
            # Try to open and convert the image
            input_image = Image.open(files[0])
            # Convert to RGB if needed (handles RGBA, P, etc.)
            if input_image.mode != "RGB":
                input_image = input_image.convert("RGB")
            # Auto-orient the image based on EXIF data
            input_image = ImageOps.exif_transpose(input_image)
            
            # Convert PIL image to bytes
            img_byte_arr = io.BytesIO()
            input_image.save(img_byte_arr, format='PNG')
            img_byte_arr.seek(0)
            image_bytes = img_byte_arr.getvalue()
            
            # Add image bytes to payload - will be converted to base64 in query_api
            payload["image_bytes"] = image_bytes
            
        except Exception as e:
            raise gr.Error(f"Could not process the uploaded image: {str(e)}. Please try uploading a different image format (JPEG, PNG, WebP).")
            
        progress(0.1, desc="Processing image...")
    else:
        print(f"Received prompt for text-to-image: {prompt}")
        # For text-to-image, we don't need an input image
        progress(0.1, desc="Generating image...")

    try:
        # Make API request with progress callback
        image_bytes = query_api(payload, progress_callback=progress)
        
        # Try to convert response bytes to PIL Image
        try:
            image = Image.open(io.BytesIO(image_bytes))
        except Exception as img_error:
            print(f"Failed to open image: {img_error}")
            print(f"Image bytes type: {type(image_bytes)}, length: {len(image_bytes) if hasattr(image_bytes, '__len__') else 'unknown'}")
            
            # Try to decode as base64 if direct opening failed
            try:
                decoded_bytes = base64.b64decode(image_bytes)
                image = Image.open(io.BytesIO(decoded_bytes))
            except:
                raise gr.Error(f"Could not process API response as image. Response length: {len(image_bytes) if hasattr(image_bytes, '__len__') else 'unknown'}")
        
        progress(1.0, desc="Complete!")
        return gr.Image(value=image)
        
    except gr.Error:
        # Re-raise gradio errors as-is
        raise
    except Exception as e:
        raise gr.Error(f"Failed to generate image: {str(e)}")

# --- UI Definition using gr.ChatInterface ---

seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_checkbox = gr.Checkbox(label="Randomize seed", value=False)
guidance_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=2.5)
steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1)

demo = gr.ChatInterface(
    fn=chat_fn,
    title="FLUX.1 Kontext [dev] - Hugging Face Router",
    description="""<p style='text-align: center;'>
    A simple chat UI for the <b>FLUX.1 Kontext [dev]</b> model using Hugging Face router.
    <br>
    To edit an image, upload it and type your instructions (e.g., "Add a hat", "Turn the cat into a tiger").
    <br>
    To generate an image, just type a prompt (e.g., "A photo of an astronaut on a horse").
    <br>
    Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>.
    </p>""",
    multimodal=True,
    textbox=gr.MultimodalTextbox(
        file_types=["image"],
        placeholder="Type a prompt and/or upload an image...",
        render=False
    ),
    additional_inputs=[
        seed_slider,
        randomize_checkbox,
        guidance_slider,
        steps_slider
    ],
    theme="soft"
)

if __name__ == "__main__":
    demo.launch()