File size: 10,519 Bytes
1bafe30
 
 
9231de3
f5f7379
 
0cea930
f5f7379
d1b130d
 
1bafe30
920a718
1bafe30
f5f7379
1bafe30
f5f7379
 
 
 
 
 
 
 
 
 
d1b130d
0cea930
f5f7379
 
0cea930
 
f5f7379
 
 
 
 
0cea930
 
 
 
 
 
c847b55
0cea930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c847b55
0cea930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c847b55
0cea930
 
 
 
 
 
 
 
 
 
c847b55
 
0cea930
1bafe30
920a718
d1b130d
1bafe30
 
 
f5f7379
 
d1b130d
1bafe30
 
 
 
 
 
 
 
 
f5f7379
 
 
 
 
 
 
 
 
 
1bafe30
 
943caab
 
d1b130d
 
 
 
 
 
 
f5f7379
d1b130d
 
f5f7379
 
 
 
 
d1b130d
943caab
 
d1b130d
 
1bafe30
 
f5f7379
d1b130d
f5f7379
 
 
 
 
c847b55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5f7379
d1b130d
f5f7379
 
c847b55
 
 
f5f7379
 
1bafe30
 
 
 
 
 
 
 
 
 
f5f7379
1bafe30
f5f7379
1bafe30
 
 
 
 
 
 
d1b130d
1bafe30
 
 
9231de3
1bafe30
 
 
 
 
 
 
 
 
 
 
d1b130d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import gradio as gr
import numpy as np
import random
import os
import base64
import requests
import time
import io
from PIL import Image, ImageOps
import pillow_heif  # For HEIF/AVIF support

# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max
API_URL = "https://router.huggingface.co/fal-ai/fal-ai/flux-kontext/dev?_subdomain=queue"

def get_headers():
    """Get headers for API requests"""
    hf_token = os.getenv("HF_TOKEN")
    if not hf_token:
        raise gr.Error("HF_TOKEN environment variable not found. Please add your Hugging Face token to the Space settings.")
    
    return {
        "Authorization": f"Bearer {hf_token}",
        "X-HF-Bill-To": "huggingface"
    }

def query_api(payload, progress_callback=None):
    """Send request to the API and return response"""
    headers = get_headers()
    
    # Submit the job
    response = requests.post(API_URL, headers=headers, json=payload)
    
    if response.status_code != 200:
        raise gr.Error(f"API request failed with status {response.status_code}: {response.text}")
    
    # Parse the initial response
    try:
        json_response = response.json()
        print(f"Initial response: {json_response}")
    except:
        raise gr.Error("Failed to parse initial API response as JSON")
    
    # Check if job was queued
    if json_response.get("status") == "IN_QUEUE":
        status_url = json_response.get("status_url")
        if not status_url:
            raise gr.Error("No status URL provided in queue response")
        
        # Poll for completion
        max_attempts = 60  # Wait up to 5 minutes (60 * 5 seconds)
        attempt = 0
        
        while attempt < max_attempts:
            if progress_callback:
                progress_callback(0.1 + (attempt / max_attempts) * 0.8, f"Processing... (attempt {attempt + 1}/60)")
            
            time.sleep(5)  # Wait 5 seconds between polls
            
            # Check status
            status_response = requests.get(status_url, headers=headers)
            
            if status_response.status_code != 200:
                raise gr.Error(f"Status check failed: {status_response.status_code}")
            
            try:
                status_data = status_response.json()
                print(f"Status check {attempt + 1}: {status_data}")
                
                if status_data.get("status") == "COMPLETED":
                    # Job completed, get the result
                    response_url = json_response.get("response_url")
                    if not response_url:
                        raise gr.Error("No response URL provided")
                    
                    result_response = requests.get(response_url, headers=headers)
                    if result_response.status_code != 200:
                        raise gr.Error(f"Failed to get result: {result_response.status_code}")
                    
                    # Check if result is JSON with image data
                    try:
                        result_data = result_response.json()
                        print(f"Result data: {result_data}")
                        
                        # Look for image in various possible fields
                        if 'images' in result_data and len(result_data['images']) > 0:
                            # Images array with URLs or base64
                            image_data = result_data['images'][0]
                            if isinstance(image_data, dict) and 'url' in image_data:
                                # Image URL - fetch it
                                img_response = requests.get(image_data['url'])
                                return img_response.content
                            elif isinstance(image_data, str):
                                # Assume base64
                                return base64.b64decode(image_data)
                        elif 'image' in result_data:
                            # Single image field
                            if isinstance(result_data['image'], str):
                                return base64.b64decode(result_data['image'])
                        elif 'url' in result_data:
                            # Direct URL
                            img_response = requests.get(result_data['url'])
                            return img_response.content
                        else:
                            raise gr.Error(f"No image found in result: {result_data}")
                            
                    except requests.exceptions.JSONDecodeError:
                        # Result might be direct image bytes
                        return result_response.content
                        
                elif status_data.get("status") == "FAILED":
                    error_msg = status_data.get("error", "Unknown error")
                    raise gr.Error(f"Job failed: {error_msg}")
                
                # Still processing, continue polling
                attempt += 1
                
            except requests.exceptions.JSONDecodeError:
                raise gr.Error("Failed to parse status response")
    
        raise gr.Error("Job timed out after 5 minutes")
    
    elif json_response.get("status") == "COMPLETED":
        # Job completed immediately
        if 'images' in json_response and len(json_response['images']) > 0:
            image_data = json_response['images'][0]
            if isinstance(image_data, str):
                return base64.b64decode(image_data)
        elif 'image' in json_response:
            return base64.b64decode(json_response['image'])
        else:
            raise gr.Error(f"No image found in immediate response: {json_response}")
    
    else:
        raise gr.Error(f"Unexpected response status: {json_response.get('status', 'unknown')}")

# --- Core Inference Function for ChatInterface ---
def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress()):
    """
    Performs image generation or editing based on user input from the chat interface.
    """
    # Register HEIF opener with PIL for AVIF/HEIF support
    pillow_heif.register_heif_opener()
    
    prompt = message["text"]
    files = message["files"]

    if not prompt and not files:
        raise gr.Error("Please provide a prompt and/or upload an image.")

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    # Prepare the payload
    payload = {
        "parameters": {
            "prompt": prompt,
            "seed": seed,
            "guidance_scale": guidance_scale,
            "num_inference_steps": steps
        }
    }

    if files:
        print(f"Received image: {files[0]}")
        try:
            # Try to open and convert the image
            input_image = Image.open(files[0])
            # Convert to RGB if needed (handles RGBA, P, etc.)
            if input_image.mode != "RGB":
                input_image = input_image.convert("RGB")
            # Auto-orient the image based on EXIF data
            input_image = ImageOps.exif_transpose(input_image)
            
            # Convert PIL image to base64 for the API
            img_byte_arr = io.BytesIO()
            input_image.save(img_byte_arr, format='PNG')
            img_byte_arr.seek(0)
            image_base64 = base64.b64encode(img_byte_arr.getvalue()).decode('utf-8')
            
            # Add image to payload for image-to-image
            payload["inputs"] = image_base64
            
        except Exception as e:
            raise gr.Error(f"Could not process the uploaded image: {str(e)}. Please try uploading a different image format (JPEG, PNG, WebP).")
            
        progress(0.1, desc="Processing image...")
    else:
        print(f"Received prompt for text-to-image: {prompt}")
        # For text-to-image, we don't need the inputs field
        progress(0.1, desc="Generating image...")

    try:
        # Make API request
        image_bytes = query_api(payload)
        
        # Try to convert response bytes to PIL Image with better error handling
        try:
            image = Image.open(io.BytesIO(image_bytes))
        except Exception as img_error:
            print(f"Failed to open image directly: {img_error}")
            # Maybe it's a different format, try to save and examine
            with open('/tmp/debug_response.bin', 'wb') as f:
                f.write(image_bytes)
            print(f"Saved response to /tmp/debug_response.bin for debugging")
            
            # Try to decode as base64 if direct opening failed
            try:
                decoded_bytes = base64.b64decode(image_bytes)
                image = Image.open(io.BytesIO(decoded_bytes))
            except:
                raise gr.Error(f"Could not process API response as image. Response type: {type(image_bytes)}, Length: {len(image_bytes) if isinstance(image_bytes, (bytes, str)) else 'unknown'}")
        
        progress(1.0, desc="Complete!")
        return gr.Image(value=image)
        
    except gr.Error:
        # Re-raise gradio errors as-is
        raise
    except Exception as e:
        raise gr.Error(f"Failed to generate image: {str(e)}")

# --- UI Definition using gr.ChatInterface ---

seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_checkbox = gr.Checkbox(label="Randomize seed", value=False)
guidance_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=2.5)
steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1)

demo = gr.ChatInterface(
    fn=chat_fn,
    title="FLUX.1 Kontext [dev] - Direct API",
    description="""<p style='text-align: center;'>
    A simple chat UI for the <b>FLUX.1 Kontext</b> model using direct API calls with requests.
    <br>
    To edit an image, upload it and type your instructions (e.g., "Add a hat").
    <br>
    To generate an image, just type a prompt (e.g., "A photo of an astronaut on a horse").
    <br>
    Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>.
    </p>""",
    multimodal=True,
    textbox=gr.MultimodalTextbox(
        file_types=["image"],
        placeholder="Type a prompt and/or upload an image...",
        render=False
    ),
    additional_inputs=[
        seed_slider,
        randomize_checkbox,
        guidance_slider,
        steps_slider
    ],
    theme="soft"
)

if __name__ == "__main__":
    demo.launch()