Spaces:
Running
on
T4
Running
on
T4
File size: 1,941 Bytes
56a97f7 148a19e c250292 56a97f7 50b7dca 46bd6e1 8cf79c4 9a9f589 50b7dca 148a19e 56a97f7 50b7dca 148a19e 6321605 56a97f7 f6edc5a fb4e476 2061b93 56a97f7 1e93dc5 50b7dca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
from PIL import Image
import torch
import gradio as gr
model2 = torch.hub.load(
"bryandlee/animegan2-pytorch:main",
"generator",
pretrained=True, # or give URL to a pretrained model
device="cuda", # or "cpu" if you don't have a GPU
progress=False, # show progress
)
model1 = torch.hub.load("bryandlee/animegan2-pytorch:main", "generator", pretrained="face_paint_512_v1", device="cuda")
face2paint = torch.hub.load(
'bryandlee/animegan2-pytorch:main', 'face2paint',
size=512, device="cuda"
)
def inference(img, ver):
if ver == 'version 2':
out = face2paint(model2, img)
else:
out = face2paint(model1, img)
return out
title = "Animeganv2"
description = "Gradio demo for AnimeGanv2 Face Portrait v2. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please use a cropped portrait picture for best results similar to the examples below"
article = "<p style='text-align: center'><a href='https://github.com/bryandlee/animegan2-pytorch' target='_blank'>Github Repo Pytorch</a> | <a href='https://github.com/Kazuhito00/AnimeGANv2-ONNX-Sample' target='_blank'>Github Repo ONNX</a></p><p style='text-align: center'>samples from repo: <img src='https://user-images.githubusercontent.com/26464535/129888683-98bb6283-7bb8-4d1a-a04a-e795f5858dcf.gif' alt='animation'/> <img src='https://user-images.githubusercontent.com/26464535/137619176-59620b59-4e20-4d98-9559-a424f86b7f24.jpg' alt='animation'/></p>"
examples=[['groot.jpeg'],['bill.png'],['tony.png'],['elon.png'],['IU.png'],['billie.png'],['will.png'],['beyonce.jpeg'],['gongyoo.jpeg']]
gr.Interface(inference, [gr.inputs.Image(type="pil"),gr.inputs.Radio(['version 1','version 2'], type="value", default='version 2', label='version')
], gr.outputs.Image(type="pil"),title=title,description=description,article=article,enable_queue=True,examples=examples).launch() |