import gradio as gr import yolov5 models = { "yolov5s": yolov5.load("akbojda/yolov5s-aquarium"), "yolov5m": yolov5.load("akbojda/yolov5m-aquarium"), } def predict(img, model_type): model = models[model_type] results = model(img, size=640) detection_img = results.render()[0] return detection_img # Interface inputs = [ gr.Image(), gr.Dropdown(["yolov5s", "yolov5m"], label="Model", value="yolov5s"), ] outputs = [ gr.Image(elem_classes="output-image") ] examples = [ ["examples/ex1.jpg", None], ["examples/ex2.jpg", None], ["examples/ex3.jpg", None], ["examples/ex4.jpg", None], ] css = ".output-image {height: 700px !important}" iface = gr.Interface(fn=predict, inputs=inputs, outputs=outputs, examples=examples, cache_examples=False, css=css) iface.launch()