# import torch # import spaces # import gradio as gr # from src.util.base import * # from src.util.params import * # from diffusers import AutoPipelineForInpainting # inpaint_pipe = AutoPipelineForInpainting.from_pretrained(inpaint_model_path).to(torch_device) # # inpaint_pipe = AutoPipelineForInpainting.from_pipe(pipe).to(torch_device) # @spaces.GPU(enable_queue=True) # def inpaint(dict, num_inference_steps, seed, prompt="", progress=gr.Progress()): # progress(0) # mask = dict["mask"].convert("RGB").resize((imageHeight, imageWidth)) # init_image = dict["image"].convert("RGB").resize((imageHeight, imageWidth)) # output = inpaint_pipe( # prompt=prompt, # image=init_image, # mask_image=mask, # guidance_scale=guidance_scale, # num_inference_steps=num_inference_steps, # generator=torch.Generator().manual_seed(seed), # ) # progress(1) # fname = "inpainting" # tab_config = { # "Tab": "Inpainting", # "Prompt": prompt, # "Number of Inference Steps per Image": num_inference_steps, # "Seed": seed, # } # imgs_list = [] # imgs_list.append((output.images[0], "Inpainted Image")) # imgs_list.append((mask, "Mask")) # export_as_zip(imgs_list, fname, tab_config) # return output.images[0], f"outputs/{fname}.zip" # __all__ = ["inpaint"]