Spaces:
Sleeping
Sleeping
Update src/pipelines/circular.py
Browse files
src/pipelines/circular.py
CHANGED
@@ -7,7 +7,7 @@ from src.util.params import *
|
|
7 |
|
8 |
@spaces.GPU(enable_queue=True)
|
9 |
def display_circular_images(
|
10 |
-
prompt, seed, num_inference_steps, num_images,
|
11 |
):
|
12 |
np.random.seed(seed)
|
13 |
text_embeddings = get_text_embeddings(prompt)
|
@@ -16,10 +16,10 @@ def display_circular_images(
|
|
16 |
latents_y = generate_latents(seed * np.random.randint(0, 100000))
|
17 |
|
18 |
scale_x = torch.cos(
|
19 |
-
torch.linspace(
|
20 |
).to(torch_device)
|
21 |
scale_y = torch.sin(
|
22 |
-
torch.linspace(
|
23 |
).to(torch_device)
|
24 |
|
25 |
noise_x = torch.tensordot(scale_x, latents_x, dims=0)
|
@@ -32,7 +32,7 @@ def display_circular_images(
|
|
32 |
for i in range(num_images):
|
33 |
progress(i / num_images)
|
34 |
image = generate_images(noise[i], text_embeddings, num_inference_steps)
|
35 |
-
images.append((image, "{}".format(i)))
|
36 |
|
37 |
progress(1, desc="Exporting as gif")
|
38 |
export_as_gif(images, filename="circular.gif")
|
@@ -42,7 +42,8 @@ def display_circular_images(
|
|
42 |
"Tab": "Circular",
|
43 |
"Prompt": prompt,
|
44 |
"Number of Steps around the Circle": num_images,
|
45 |
-
"Proportion of Circle":
|
|
|
46 |
"Number of Inference Steps per Image": num_inference_steps,
|
47 |
"Seed": seed,
|
48 |
}
|
@@ -50,4 +51,5 @@ def display_circular_images(
|
|
50 |
return images, "outputs/circular.gif", f"outputs/{fname}.zip"
|
51 |
|
52 |
|
|
|
53 |
__all__ = ["display_circular_images"]
|
|
|
7 |
|
8 |
@spaces.GPU(enable_queue=True)
|
9 |
def display_circular_images(
|
10 |
+
prompt, seed, num_inference_steps, num_images, start_degree, end_degree, progress=gr.Progress()
|
11 |
):
|
12 |
np.random.seed(seed)
|
13 |
text_embeddings = get_text_embeddings(prompt)
|
|
|
16 |
latents_y = generate_latents(seed * np.random.randint(0, 100000))
|
17 |
|
18 |
scale_x = torch.cos(
|
19 |
+
torch.linspace(start_degree, end_degree, num_images) * torch.pi / 180
|
20 |
).to(torch_device)
|
21 |
scale_y = torch.sin(
|
22 |
+
torch.linspace(start_degree, end_degree, num_images) * torch.pi / 180
|
23 |
).to(torch_device)
|
24 |
|
25 |
noise_x = torch.tensordot(scale_x, latents_x, dims=0)
|
|
|
32 |
for i in range(num_images):
|
33 |
progress(i / num_images)
|
34 |
image = generate_images(noise[i], text_embeddings, num_inference_steps)
|
35 |
+
images.append((image, "{}".format(i + 1)))
|
36 |
|
37 |
progress(1, desc="Exporting as gif")
|
38 |
export_as_gif(images, filename="circular.gif")
|
|
|
42 |
"Tab": "Circular",
|
43 |
"Prompt": prompt,
|
44 |
"Number of Steps around the Circle": num_images,
|
45 |
+
"Start Proportion of Circle": start_degree,
|
46 |
+
"End Proportion of Circle": end_degree,
|
47 |
"Number of Inference Steps per Image": num_inference_steps,
|
48 |
"Seed": seed,
|
49 |
}
|
|
|
51 |
return images, "outputs/circular.gif", f"outputs/{fname}.zip"
|
52 |
|
53 |
|
54 |
+
|
55 |
__all__ = ["display_circular_images"]
|