Spaces:
Sleeping
Sleeping
# import torch | |
# import spaces | |
# import gradio as gr | |
# from src.util.base import * | |
# from src.util.params import * | |
# from diffusers import AutoPipelineForInpainting | |
# inpaint_pipe = AutoPipelineForInpainting.from_pretrained(inpaint_model_path).to(torch_device) | |
# # inpaint_pipe = AutoPipelineForInpainting.from_pipe(pipe).to(torch_device) | |
# @spaces.GPU(enable_queue=True) | |
# def inpaint(dict, num_inference_steps, seed, prompt="", progress=gr.Progress()): | |
# progress(0) | |
# mask = dict["mask"].convert("RGB").resize((imageHeight, imageWidth)) | |
# init_image = dict["image"].convert("RGB").resize((imageHeight, imageWidth)) | |
# output = inpaint_pipe( | |
# prompt=prompt, | |
# image=init_image, | |
# mask_image=mask, | |
# guidance_scale=guidance_scale, | |
# num_inference_steps=num_inference_steps, | |
# generator=torch.Generator().manual_seed(seed), | |
# ) | |
# progress(1) | |
# fname = "inpainting" | |
# tab_config = { | |
# "Tab": "Inpainting", | |
# "Prompt": prompt, | |
# "Number of Inference Steps per Image": num_inference_steps, | |
# "Seed": seed, | |
# } | |
# imgs_list = [] | |
# imgs_list.append((output.images[0], "Inpainted Image")) | |
# imgs_list.append((mask, "Mask")) | |
# export_as_zip(imgs_list, fname, tab_config) | |
# return output.images[0], f"outputs/{fname}.zip" | |
# __all__ = ["inpaint"] | |