Spaces:
Sleeping
Sleeping
import torch | |
import spaces | |
import numpy as np | |
import gradio as gr | |
from src.util.base import * | |
from src.util.params import * | |
def display_circular_images( | |
prompt, seed, num_inference_steps, num_images, start_degree, end_degree, progress=gr.Progress() | |
): | |
np.random.seed(seed) | |
num_images += 1 | |
text_embeddings = get_text_embeddings(prompt) | |
latents_x = generate_latents(seed) | |
latents_y = generate_latents(seed * np.random.randint(0, 100000)) | |
scale_x = torch.cos( | |
torch.linspace(start_degree, end_degree, num_images) * torch.pi / 180 | |
).to(torch_device) | |
scale_y = torch.sin( | |
torch.linspace(start_degree, end_degree, num_images) * torch.pi / 180 | |
).to(torch_device) | |
noise_x = torch.tensordot(scale_x, latents_x, dims=0) | |
noise_y = torch.tensordot(scale_y, latents_y, dims=0) | |
noise = noise_x + noise_y | |
progress(0) | |
images = [] | |
for i in range(num_images): | |
progress(i / num_images) | |
image = generate_images(noise[i], text_embeddings, num_inference_steps) | |
images.append((image, str(start_degree + i*(end_degree-start_degree)/(num_images-1)))) | |
progress(1, desc="Exporting as gif") | |
export_as_gif(images, filename="circular.gif") | |
fname = "circular" | |
tab_config = { | |
"Tab": "Circular", | |
"Prompt": prompt, | |
"Number of Steps around the Circle": num_images, | |
"Start Proportion of Circle": start_degree, | |
"End Proportion of Circle": end_degree, | |
"Number of Inference Steps per Image": num_inference_steps, | |
"Seed": seed, | |
} | |
export_as_zip(images, fname, tab_config) | |
return images, "outputs/circular.gif", f"outputs/{fname}.zip" | |
__all__ = ["display_circular_images"] | |