Spaces:
Sleeping
Sleeping
Update reccomendation.py
Browse files- reccomendation.py +1096 -11
reccomendation.py
CHANGED
@@ -1,3 +1,1088 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
import requests
|
3 |
from pydantic import BaseModel, Field
|
@@ -147,10 +1232,10 @@ def get_access_token():
|
|
147 |
return access_token
|
148 |
|
149 |
try:
|
150 |
-
login_url =
|
151 |
login_data = {
|
152 |
-
"email":
|
153 |
-
"password": "
|
154 |
}
|
155 |
login_headers = {
|
156 |
'accept': 'application/json',
|
@@ -158,7 +1243,7 @@ def get_access_token():
|
|
158 |
}
|
159 |
|
160 |
# Add timeout to prevent hanging
|
161 |
-
login_response = requests.post(login_url, headers=login_headers, json=login_data, timeout=
|
162 |
|
163 |
if login_response.status_code == 200:
|
164 |
login_result = login_response.json()
|
@@ -188,7 +1273,7 @@ def generate_smart_hiring_collateral(job_description_text: str) -> tuple[str, st
|
|
188 |
Returns a tuple of (collateral, job_id)
|
189 |
"""
|
190 |
try:
|
191 |
-
url =
|
192 |
|
193 |
# Generate a unique job ID using UUID
|
194 |
job_id = str(uuid.uuid4())
|
@@ -206,7 +1291,7 @@ def generate_smart_hiring_collateral(job_description_text: str) -> tuple[str, st
|
|
206 |
}
|
207 |
|
208 |
# Make the API request
|
209 |
-
response = requests.post(url, headers=headers, data=payload, timeout=
|
210 |
|
211 |
if response.status_code == 200:
|
212 |
logger.info("Smart hiring collateral generated successfully")
|
@@ -234,7 +1319,7 @@ def generate_smart_hiring_collateral(job_description_text: str) -> tuple[str, st
|
|
234 |
new_token = get_access_token()
|
235 |
if new_token:
|
236 |
headers['Authorization'] = f'Bearer {new_token}'
|
237 |
-
response = requests.post(url, headers=headers, data=payload, timeout=
|
238 |
if response.status_code == 200:
|
239 |
logger.info("Smart hiring collateral generated successfully with fresh token")
|
240 |
# Parse the response to extract smart_hiring_criteria
|
@@ -777,7 +1862,7 @@ def analyze_job_fit(job_description: str, resume_file_path: str, job_row: pd.Ser
|
|
777 |
Analyze job-candidate fit using the external API
|
778 |
"""
|
779 |
|
780 |
-
url =
|
781 |
|
782 |
# Check if resume file exists
|
783 |
if not os.path.exists(resume_file_path):
|
@@ -820,8 +1905,8 @@ def analyze_job_fit(job_description: str, resume_file_path: str, job_row: pd.Ser
|
|
820 |
|
821 |
try:
|
822 |
# Make the API request with configured timeout
|
823 |
-
response = requests.post(url, headers=headers, files=files, data=data, timeout=
|
824 |
-
|
825 |
# If we get an authentication error, try to get a fresh token and retry once
|
826 |
if response.status_code == 401:
|
827 |
logger.warning("Authentication failed, getting fresh token...")
|
@@ -833,7 +1918,7 @@ def analyze_job_fit(job_description: str, resume_file_path: str, job_row: pd.Ser
|
|
833 |
# Close the previous file and reopen
|
834 |
files['resume'][1].close()
|
835 |
files['resume'] = (os.path.basename(resume_file_path), open(resume_file_path, 'rb'), 'application/pdf')
|
836 |
-
response = requests.post(url, headers=headers, files=files, data=data, timeout=
|
837 |
else:
|
838 |
# If we can't get a fresh token, return error
|
839 |
return {"error": "Authentication failed and could not obtain fresh token"}
|
|
|
1 |
+
# import pandas as pd
|
2 |
+
# import requests
|
3 |
+
# from pydantic import BaseModel, Field
|
4 |
+
# from typing import List, Tuple, Optional
|
5 |
+
# from langchain_openai import ChatOpenAI
|
6 |
+
# from langchain_core.prompts import ChatPromptTemplate
|
7 |
+
# import os
|
8 |
+
# from fastapi import FastAPI, UploadFile, File, Form, HTTPException, Depends, Header, Request
|
9 |
+
# from fastapi.responses import JSONResponse
|
10 |
+
# from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
11 |
+
# from fastapi.middleware.cors import CORSMiddleware
|
12 |
+
# import json
|
13 |
+
# import tempfile
|
14 |
+
# import shutil
|
15 |
+
# import PyPDF2
|
16 |
+
# from dotenv import load_dotenv
|
17 |
+
# import pdfplumber
|
18 |
+
# import re
|
19 |
+
# from db import *
|
20 |
+
# import time
|
21 |
+
# import asyncio
|
22 |
+
# from contextlib import asynccontextmanager
|
23 |
+
# import logging
|
24 |
+
# from sqlalchemy.pool import NullPool
|
25 |
+
# from cloud_config import *
|
26 |
+
# import uuid
|
27 |
+
|
28 |
+
# # Load environment variables
|
29 |
+
# load_dotenv()
|
30 |
+
|
31 |
+
# # Configure logging for Cloud Run
|
32 |
+
# logging.basicConfig(
|
33 |
+
# level=getattr(logging, LOG_LEVEL),
|
34 |
+
# format=LOG_FORMAT
|
35 |
+
# )
|
36 |
+
# logger = logging.getLogger(__name__)
|
37 |
+
|
38 |
+
# # Global variable to store access token
|
39 |
+
# access_token = None
|
40 |
+
|
41 |
+
# # Startup/shutdown events
|
42 |
+
# @asynccontextmanager
|
43 |
+
# async def lifespan(app: FastAPI):
|
44 |
+
# # Startup
|
45 |
+
# logger.info("Starting up Job Recommendation API...")
|
46 |
+
# # You can initialize connection pools here if needed
|
47 |
+
# yield
|
48 |
+
# # Shutdown
|
49 |
+
# logger.info("Shutting down Job Recommendation API...")
|
50 |
+
# # Close any open connections here
|
51 |
+
|
52 |
+
# # Initialize FastAPI app with lifespan
|
53 |
+
# app = FastAPI(
|
54 |
+
# title="Job Recommendation API",
|
55 |
+
# description="API for processing resumes and recommending jobs",
|
56 |
+
# lifespan=lifespan
|
57 |
+
# )
|
58 |
+
|
59 |
+
# # Add CORS middleware for cloud deployment
|
60 |
+
# app.add_middleware(
|
61 |
+
# CORSMiddleware,
|
62 |
+
# allow_origins=["*"], # Configure based on your needs
|
63 |
+
# allow_credentials=True,
|
64 |
+
# allow_methods=["*"],
|
65 |
+
# allow_headers=["*"],
|
66 |
+
# )
|
67 |
+
|
68 |
+
# # Add request ID middleware for better tracing
|
69 |
+
# @app.middleware("http")
|
70 |
+
# async def add_request_id(request: Request, call_next):
|
71 |
+
# request_id = f"{time.time()}-{request.client.host}"
|
72 |
+
# request.state.request_id = request_id
|
73 |
+
|
74 |
+
# # Log the request
|
75 |
+
# logger.info(f"Request ID: {request_id} - {request.method} {request.url.path}")
|
76 |
+
|
77 |
+
# try:
|
78 |
+
# response = await call_next(request)
|
79 |
+
# response.headers["X-Request-ID"] = request_id
|
80 |
+
# return response
|
81 |
+
# except Exception as e:
|
82 |
+
# logger.error(f"Request ID: {request_id} - Error: {str(e)}")
|
83 |
+
# raise
|
84 |
+
|
85 |
+
# # Security configuration
|
86 |
+
# API_KEY = os.getenv("API_KEY")
|
87 |
+
# security = HTTPBearer()
|
88 |
+
|
89 |
+
# def verify_api_key(credentials: HTTPAuthorizationCredentials = Depends(security)):
|
90 |
+
# """
|
91 |
+
# Verify the API key from the Authorization header
|
92 |
+
# """
|
93 |
+
# if not API_KEY:
|
94 |
+
# logger.error("API key not configured")
|
95 |
+
# raise HTTPException(
|
96 |
+
# status_code=500,
|
97 |
+
# detail="API key not configured",
|
98 |
+
# )
|
99 |
+
|
100 |
+
# if credentials.credentials != API_KEY:
|
101 |
+
# logger.warning("Invalid API key attempt")
|
102 |
+
# raise HTTPException(
|
103 |
+
# status_code=401,
|
104 |
+
# detail="Invalid API key",
|
105 |
+
# headers={"WWW-Authenticate": "Bearer"},
|
106 |
+
# )
|
107 |
+
# return credentials.credentials
|
108 |
+
|
109 |
+
# # Initialize OpenAI client with error handling
|
110 |
+
# try:
|
111 |
+
# llm = ChatOpenAI(
|
112 |
+
# model="gpt-4o-mini",
|
113 |
+
# temperature=0,
|
114 |
+
# api_key=os.getenv("OPENAI_API_KEY")
|
115 |
+
# )
|
116 |
+
# logger.info("OpenAI client initialized successfully")
|
117 |
+
# except Exception as e:
|
118 |
+
# logger.error(f"Failed to initialize OpenAI client: {e}")
|
119 |
+
# raise
|
120 |
+
|
121 |
+
# # Initialize database engine with connection pooling suitable for Cloud Run
|
122 |
+
# def get_engine():
|
123 |
+
# """
|
124 |
+
# Get database engine with NullPool for Cloud Run
|
125 |
+
# """
|
126 |
+
# try:
|
127 |
+
# conn_string = f"postgresql://{DB_PARAMS['user']}:{DB_PARAMS['password']}@{DB_PARAMS['host']}:{DB_PARAMS['port']}/{DB_PARAMS['dbname']}"
|
128 |
+
# # Use NullPool for Cloud Run to avoid connection issues
|
129 |
+
# engine = create_engine(conn_string, poolclass=NullPool, pool_pre_ping=True)
|
130 |
+
# logger.info("Database engine created successfully")
|
131 |
+
# return engine
|
132 |
+
# except Exception as e:
|
133 |
+
# logger.error(f"Failed to create database engine: {e}")
|
134 |
+
# raise
|
135 |
+
|
136 |
+
# # Initialize database engine
|
137 |
+
# engine = get_engine()
|
138 |
+
|
139 |
+
# def get_access_token():
|
140 |
+
# """
|
141 |
+
# Get access token for the external API with better error handling
|
142 |
+
# """
|
143 |
+
# global access_token
|
144 |
+
|
145 |
+
# # If we already have a token, return it
|
146 |
+
# if access_token:
|
147 |
+
# return access_token
|
148 |
+
|
149 |
+
# try:
|
150 |
+
# login_url = "https://fitscore-agent-535960463668.us-central1.run.app/auth/login"
|
151 |
+
# login_data = {
|
152 |
+
# "email": "[email protected]",
|
153 |
+
# "password": "Password@123"
|
154 |
+
# }
|
155 |
+
# login_headers = {
|
156 |
+
# 'accept': 'application/json',
|
157 |
+
# 'Content-Type': 'application/json'
|
158 |
+
# }
|
159 |
+
|
160 |
+
# # Add timeout to prevent hanging
|
161 |
+
# login_response = requests.post(login_url, headers=login_headers, json=login_data, timeout=LOGIN_TIMEOUT)
|
162 |
+
|
163 |
+
# if login_response.status_code == 200:
|
164 |
+
# login_result = login_response.json()
|
165 |
+
# access_token = login_result.get('data', {}).get('tokens', {}).get('accessToken')
|
166 |
+
# if access_token:
|
167 |
+
# logger.info("Successfully obtained access token")
|
168 |
+
# return access_token
|
169 |
+
# else:
|
170 |
+
# logger.error("Login successful but no access token found in response")
|
171 |
+
# return None
|
172 |
+
# else:
|
173 |
+
# logger.error(f"Login failed with status {login_response.status_code}: {login_response.text}")
|
174 |
+
# return None
|
175 |
+
# except requests.exceptions.Timeout:
|
176 |
+
# logger.error("Login request timed out")
|
177 |
+
# return None
|
178 |
+
# except requests.exceptions.RequestException as e:
|
179 |
+
# logger.error(f"Network error during login: {e}")
|
180 |
+
# return None
|
181 |
+
# except Exception as e:
|
182 |
+
# logger.error(f"Unexpected error getting access token: {e}")
|
183 |
+
# return None
|
184 |
+
|
185 |
+
# def generate_smart_hiring_collateral(job_description_text: str) -> tuple[str, str]:
|
186 |
+
# """
|
187 |
+
# Generate collateral using the smart-hiring/generate endpoint
|
188 |
+
# Returns a tuple of (collateral, job_id)
|
189 |
+
# """
|
190 |
+
# try:
|
191 |
+
# url = "https://fitscore-agent-535960463668.us-central1.run.app/smart-hiring/generate"
|
192 |
+
|
193 |
+
# # Generate a unique job ID using UUID
|
194 |
+
# job_id = str(uuid.uuid4())
|
195 |
+
|
196 |
+
# # Prepare headers with authentication
|
197 |
+
# headers = {
|
198 |
+
# 'accept': 'application/json',
|
199 |
+
# 'Authorization': f'Bearer {get_access_token()}'
|
200 |
+
# }
|
201 |
+
|
202 |
+
# # Prepare payload
|
203 |
+
# payload = {
|
204 |
+
# 'job_id': job_id,
|
205 |
+
# 'job_description_text': job_description_text
|
206 |
+
# }
|
207 |
+
|
208 |
+
# # Make the API request
|
209 |
+
# response = requests.post(url, headers=headers, data=payload, timeout=EXTERNAL_API_TIMEOUT)
|
210 |
+
|
211 |
+
# if response.status_code == 200:
|
212 |
+
# logger.info("Smart hiring collateral generated successfully")
|
213 |
+
# # Parse the response to extract smart_hiring_criteria
|
214 |
+
# try:
|
215 |
+
# response_data = response.json()
|
216 |
+
# if response_data.get('success') and 'data' in response_data:
|
217 |
+
# smart_hiring_criteria = response_data['data'].get('smart_hiring_criteria', '')
|
218 |
+
# if smart_hiring_criteria:
|
219 |
+
# logger.info("Successfully extracted smart hiring criteria")
|
220 |
+
# return smart_hiring_criteria, job_id
|
221 |
+
# else:
|
222 |
+
# logger.warning("No smart_hiring_criteria found in response")
|
223 |
+
# return "", job_id
|
224 |
+
# else:
|
225 |
+
# logger.warning("Invalid response format from smart hiring API")
|
226 |
+
# return "", job_id
|
227 |
+
# except json.JSONDecodeError as e:
|
228 |
+
# logger.error(f"Failed to parse smart hiring response as JSON: {e}")
|
229 |
+
# return "", job_id
|
230 |
+
# elif response.status_code == 401:
|
231 |
+
# logger.warning("Authentication failed for smart hiring, getting fresh token...")
|
232 |
+
# global access_token
|
233 |
+
# access_token = None # Reset the token
|
234 |
+
# new_token = get_access_token()
|
235 |
+
# if new_token:
|
236 |
+
# headers['Authorization'] = f'Bearer {new_token}'
|
237 |
+
# response = requests.post(url, headers=headers, data=payload, timeout=EXTERNAL_API_TIMEOUT)
|
238 |
+
# if response.status_code == 200:
|
239 |
+
# logger.info("Smart hiring collateral generated successfully with fresh token")
|
240 |
+
# # Parse the response to extract smart_hiring_criteria
|
241 |
+
# try:
|
242 |
+
# response_data = response.json()
|
243 |
+
# if response_data.get('success') and 'data' in response_data:
|
244 |
+
# smart_hiring_criteria = response_data['data'].get('smart_hiring_criteria', '')
|
245 |
+
# if smart_hiring_criteria:
|
246 |
+
# logger.info("Successfully extracted smart hiring criteria with fresh token")
|
247 |
+
# return smart_hiring_criteria, job_id
|
248 |
+
# else:
|
249 |
+
# logger.warning("No smart_hiring_criteria found in response with fresh token")
|
250 |
+
# return "", job_id
|
251 |
+
# else:
|
252 |
+
# logger.warning("Invalid response format from smart hiring API with fresh token")
|
253 |
+
# return "", job_id
|
254 |
+
# except json.JSONDecodeError as e:
|
255 |
+
# logger.error(f"Failed to parse smart hiring response as JSON with fresh token: {e}")
|
256 |
+
# return "", job_id
|
257 |
+
# else:
|
258 |
+
# logger.error(f"Smart hiring API call failed with status {response.status_code}")
|
259 |
+
# return "", job_id
|
260 |
+
# else:
|
261 |
+
# logger.error("Could not obtain fresh token for smart hiring")
|
262 |
+
# return "", job_id
|
263 |
+
# else:
|
264 |
+
# logger.error(f"Smart hiring API call failed with status {response.status_code}: {response.text}")
|
265 |
+
# return "", job_id
|
266 |
+
|
267 |
+
# except requests.exceptions.Timeout:
|
268 |
+
# logger.error(f"Smart hiring API request timed out after {EXTERNAL_API_TIMEOUT} seconds")
|
269 |
+
# return "", ""
|
270 |
+
# except Exception as e:
|
271 |
+
# logger.error(f"Exception occurred in smart hiring generation: {str(e)}")
|
272 |
+
# return "", ""
|
273 |
+
|
274 |
+
# class structure(BaseModel):
|
275 |
+
# name: str = Field(description="Name of the candidate")
|
276 |
+
# location: str = Field(description="The location of the candidate. Extract city and state if possible.")
|
277 |
+
# skills: List[str] = Field(description="List of individual skills of the candidate")
|
278 |
+
# ideal_jobs: str = Field(description="List of ideal jobs for the candidate based on past experience.")
|
279 |
+
# email: str = Field(description="The email of the candidate")
|
280 |
+
# yoe: str = Field(description="Years of experience of the candidate.")
|
281 |
+
# experience: str = Field(description="A brief summary of the candidate's past experience.")
|
282 |
+
# industry: str = Field(description="The industry the candidate has experience in.(Tech,Legal,Finance/Accounting,Healthcare,Industrial,Logistics,Telecom,Admin,Other)")
|
283 |
+
|
284 |
+
# class JobAnalysis(BaseModel):
|
285 |
+
# job_title: str
|
286 |
+
# company_name: str
|
287 |
+
# analysis: dict
|
288 |
+
|
289 |
+
# def extract_text_from_pdf(pdf_file_path: str) -> str:
|
290 |
+
# """
|
291 |
+
# Extract text from PDF file using multiple methods for better accuracy
|
292 |
+
# """
|
293 |
+
# text = ""
|
294 |
+
|
295 |
+
# # Method 1: Try pdfplumber (better for complex layouts)
|
296 |
+
# try:
|
297 |
+
# with pdfplumber.open(pdf_file_path) as pdf:
|
298 |
+
# for page in pdf.pages:
|
299 |
+
# page_text = page.extract_text()
|
300 |
+
# if page_text:
|
301 |
+
# text += page_text + "\n"
|
302 |
+
# if text.strip():
|
303 |
+
# logger.info(f"Successfully extracted text using pdfplumber: {len(text)} characters")
|
304 |
+
# return text.strip()
|
305 |
+
# except Exception as e:
|
306 |
+
# logger.warning(f"pdfplumber failed: {e}")
|
307 |
+
|
308 |
+
# # Method 2: Try PyPDF2 (fallback)
|
309 |
+
# try:
|
310 |
+
# with open(pdf_file_path, 'rb') as file:
|
311 |
+
# pdf_reader = PyPDF2.PdfReader(file)
|
312 |
+
# for page in pdf_reader.pages:
|
313 |
+
# page_text = page.extract_text()
|
314 |
+
# if page_text:
|
315 |
+
# text += page_text + "\n"
|
316 |
+
# if text.strip():
|
317 |
+
# logger.info(f"Successfully extracted text using PyPDF2: {len(text)} characters")
|
318 |
+
# return text.strip()
|
319 |
+
# except Exception as e:
|
320 |
+
# logger.error(f"PyPDF2 failed: {e}")
|
321 |
+
|
322 |
+
# # If both methods fail, return empty string
|
323 |
+
# logger.error("Failed to extract text from PDF")
|
324 |
+
# return ""
|
325 |
+
|
326 |
+
# def extract_resume_info(resume_text: str) -> structure:
|
327 |
+
# """
|
328 |
+
# Extract structured information from resume using LLM
|
329 |
+
# """
|
330 |
+
# prompt = ChatPromptTemplate.from_template("""
|
331 |
+
# You are an expert resume parser. Extract the following information from the resume text provided and return it in a structured JSON format.
|
332 |
+
|
333 |
+
# Resume Text:
|
334 |
+
# {resume_text}
|
335 |
+
|
336 |
+
# Please extract and structure the information according to the following schema:
|
337 |
+
# - name: Full name of the candidate
|
338 |
+
# - location: City and state if available, otherwise general location
|
339 |
+
# - skills: List of technical skills, tools, technologies, programming languages, etc.
|
340 |
+
# - ideal_jobs: Based on their experience, what types of jobs would be ideal for this candidate
|
341 |
+
# - email: Email address of the candidate (if found in resume)
|
342 |
+
# - yoe: Years of experience (extract from work history)
|
343 |
+
# - experience: Brief summary of their work experience and background
|
344 |
+
# - industry: Categorize into one of these industries: Tech, Legal, Finance/Accounting, Healthcare, Industrial, Logistics, Telecom, Admin, Other
|
345 |
+
|
346 |
+
# Return ONLY a valid JSON object with these fields. Do not include any other text or explanations.
|
347 |
+
# """)
|
348 |
+
|
349 |
+
# try:
|
350 |
+
# str_llm = llm.with_structured_output(structure)
|
351 |
+
# chain = prompt | str_llm
|
352 |
+
# response = chain.invoke({"resume_text": resume_text})
|
353 |
+
|
354 |
+
# validated_data = {
|
355 |
+
# 'name': response.name,
|
356 |
+
# 'location': response.location,
|
357 |
+
# 'email': response.email,
|
358 |
+
# 'skills': response.skills,
|
359 |
+
# 'ideal_jobs': response.ideal_jobs,
|
360 |
+
# 'yoe': response.yoe,
|
361 |
+
# 'experience': response.experience,
|
362 |
+
# 'industry': response.industry
|
363 |
+
# }
|
364 |
+
|
365 |
+
# logger.info(f"Successfully extracted resume info for: {validated_data['name']}")
|
366 |
+
# return validated_data
|
367 |
+
|
368 |
+
# except Exception as e:
|
369 |
+
# logger.error(f"Failed to extract resume info: {e}")
|
370 |
+
# return {
|
371 |
+
# 'name': "Unknown",
|
372 |
+
# 'location': "Unknown",
|
373 |
+
# 'email': "",
|
374 |
+
# 'skills': [],
|
375 |
+
# 'ideal_jobs': "Software Engineer",
|
376 |
+
# 'yoe': "0",
|
377 |
+
# 'experience': "No experience listed",
|
378 |
+
# 'industry': "Tech"
|
379 |
+
# }
|
380 |
+
|
381 |
+
# def filter_jobs_by_industry(jobs_df: pd.DataFrame, target_industry: str) -> pd.DataFrame:
|
382 |
+
# """
|
383 |
+
# Filter jobs by industry
|
384 |
+
# """
|
385 |
+
# # Map the extracted industry to database industry values
|
386 |
+
# industry_mapping = {
|
387 |
+
# 'Tech': ['technology', 'VC Tech'],
|
388 |
+
# 'Legal': ['Legal'],
|
389 |
+
# 'Finance/Accounting': ['finance/Accounting'],
|
390 |
+
# 'Healthcare': ['healthcare'],
|
391 |
+
# 'Industrial': ['industrial'],
|
392 |
+
# 'Logistics': ['logistics'],
|
393 |
+
# 'Telecom': ['telecom'],
|
394 |
+
# 'Admin': ['admin'],
|
395 |
+
# 'Other': ['Other']
|
396 |
+
# }
|
397 |
+
|
398 |
+
# target_industries = industry_mapping.get(target_industry, ['Tech'])
|
399 |
+
|
400 |
+
# # Filter jobs by industry (using database column name 'industry')
|
401 |
+
# filtered_jobs = jobs_df[jobs_df['industry'].isin(target_industries)]
|
402 |
+
|
403 |
+
# logger.info(f"Filtered {len(filtered_jobs)} jobs for industry: {target_industry}")
|
404 |
+
# return filtered_jobs
|
405 |
+
|
406 |
+
# def filter_jobs_by_location(jobs_df: pd.DataFrame, candidate_location: str) -> pd.DataFrame:
|
407 |
+
# """
|
408 |
+
# Filter jobs by location matching the candidate's location
|
409 |
+
# """
|
410 |
+
# if not candidate_location or candidate_location.lower() in ['unknown', 'n/a', '']:
|
411 |
+
# logger.info(f"No location info provided, returning all {len(jobs_df)} jobs")
|
412 |
+
# return jobs_df # Return all jobs if no location info
|
413 |
+
|
414 |
+
# # Clean and normalize candidate location
|
415 |
+
# candidate_location = candidate_location.lower().strip()
|
416 |
+
# logger.info(f"Filtering jobs for candidate location: {candidate_location}")
|
417 |
+
|
418 |
+
# # Extract state abbreviations and full names
|
419 |
+
# state_mapping = {
|
420 |
+
# 'alabama': 'al', 'alaska': 'ak', 'arizona': 'az', 'arkansas': 'ar', 'california': 'ca',
|
421 |
+
# 'colorado': 'co', 'connecticut': 'ct', 'delaware': 'de', 'district of columbia': 'dc', 'florida': 'fl', 'georgia': 'ga',
|
422 |
+
# 'hawaii': 'hi', 'idaho': 'id', 'illinois': 'il', 'indiana': 'in', 'iowa': 'ia',
|
423 |
+
# 'kansas': 'ks', 'kentucky': 'ky', 'louisiana': 'la', 'maine': 'me', 'maryland': 'md',
|
424 |
+
# 'massachusetts': 'ma', 'michigan': 'mi', 'minnesota': 'mn', 'mississippi': 'ms', 'missouri': 'mo',
|
425 |
+
# 'montana': 'mt', 'nebraska': 'ne', 'nevada': 'nv', 'new hampshire': 'nh', 'new jersey': 'nj',
|
426 |
+
# 'new mexico': 'nm', 'new york': 'ny', 'north carolina': 'nc', 'north dakota': 'nd', 'ohio': 'oh',
|
427 |
+
# 'oklahoma': 'ok', 'oregon': 'or', 'pennsylvania': 'pa', 'rhode island': 'ri', 'south carolina': 'sc',
|
428 |
+
# 'south dakota': 'sd', 'tennessee': 'tn', 'texas': 'tx', 'utah': 'ut', 'vermont': 'vt',
|
429 |
+
# 'virginia': 'va', 'washington': 'wa', 'west virginia': 'wv', 'wisconsin': 'wi', 'wyoming': 'wy'
|
430 |
+
# }
|
431 |
+
|
432 |
+
# # Create location patterns to match
|
433 |
+
# location_patterns = []
|
434 |
+
|
435 |
+
# # Add the original location
|
436 |
+
# location_patterns.append(candidate_location)
|
437 |
+
|
438 |
+
# # Add state variations
|
439 |
+
# for state_name, state_abbr in state_mapping.items():
|
440 |
+
# if state_name in candidate_location or state_abbr in candidate_location:
|
441 |
+
# location_patterns.extend([state_name, state_abbr])
|
442 |
+
|
443 |
+
# # Add common city variations (extract city name)
|
444 |
+
# city_match = re.search(r'^([^,]+)', candidate_location)
|
445 |
+
# if city_match:
|
446 |
+
# city_name = city_match.group(1).strip()
|
447 |
+
# location_patterns.append(city_name)
|
448 |
+
|
449 |
+
# # Add remote/anywhere patterns if location is remote
|
450 |
+
# if 'remote' in candidate_location or 'anywhere' in candidate_location:
|
451 |
+
# location_patterns.extend(['remote', 'anywhere', 'work from home', 'wfh'])
|
452 |
+
|
453 |
+
# logger.info(f"Location patterns to match: {location_patterns}")
|
454 |
+
|
455 |
+
# # Filter jobs by location
|
456 |
+
# matching_jobs = []
|
457 |
+
|
458 |
+
# for _, job_row in jobs_df.iterrows():
|
459 |
+
# job_location = str(job_row.get('job_location', '')).lower()
|
460 |
+
|
461 |
+
# # Check if any location pattern matches
|
462 |
+
# location_matches = any(pattern in job_location for pattern in location_patterns)
|
463 |
+
|
464 |
+
# # Also check for remote jobs if candidate location includes remote
|
465 |
+
# if 'remote' in candidate_location and any(remote_term in job_location for remote_term in ['remote', 'anywhere', 'work from home', 'wfh']):
|
466 |
+
# location_matches = True
|
467 |
+
|
468 |
+
# # Check for exact city/state matches
|
469 |
+
# if candidate_location in job_location or job_location in candidate_location:
|
470 |
+
# location_matches = True
|
471 |
+
|
472 |
+
# if location_matches:
|
473 |
+
# matching_jobs.append(job_row)
|
474 |
+
|
475 |
+
# result_df = pd.DataFrame(matching_jobs) if matching_jobs else jobs_df
|
476 |
+
# logger.info(f"Found {len(matching_jobs)} jobs matching location out of {len(jobs_df)} total jobs")
|
477 |
+
|
478 |
+
# return result_df
|
479 |
+
|
480 |
+
# def extract_experience_requirement(requirements_text: str) -> dict:
|
481 |
+
# """
|
482 |
+
# Extract experience requirements from job requirements text
|
483 |
+
# Returns a dictionary with min_years, max_years, and level
|
484 |
+
# """
|
485 |
+
# if not requirements_text or pd.isna(requirements_text):
|
486 |
+
# return {'min_years': 0, 'max_years': 999, 'level': 'any'}
|
487 |
+
|
488 |
+
# requirements_text = str(requirements_text).lower()
|
489 |
+
|
490 |
+
# # Common experience patterns
|
491 |
+
# experience_patterns = [
|
492 |
+
# # Specific year ranges
|
493 |
+
# r'(\d+)[\-\+]\s*(\d+)\s*years?\s*experience',
|
494 |
+
# r'(\d+)\s*to\s*(\d+)\s*years?\s*experience',
|
495 |
+
# r'(\d+)\s*-\s*(\d+)\s*years?\s*experience',
|
496 |
+
|
497 |
+
# # Minimum years
|
498 |
+
# r'(\d+)\+?\s*years?\s*experience',
|
499 |
+
# r'minimum\s*(\d+)\s*years?\s*experience',
|
500 |
+
# r'at\s*least\s*(\d+)\s*years?\s*experience',
|
501 |
+
|
502 |
+
# # Level-based patterns
|
503 |
+
# r'(entry\s*level|junior|associate)',
|
504 |
+
# r'(mid\s*level|intermediate|mid\s*senior)',
|
505 |
+
# r'(senior|lead|principal|staff)',
|
506 |
+
# r'(executive|director|vp|chief|c\s*level)',
|
507 |
+
|
508 |
+
# # Specific year mentions
|
509 |
+
# r'(\d+)\s*years?\s*in\s*the\s*field',
|
510 |
+
# r'(\d+)\s*years?\s*of\s*professional\s*experience',
|
511 |
+
# r'(\d+)\s*years?\s*of\s*relevant\s*experience'
|
512 |
+
# ]
|
513 |
+
|
514 |
+
# min_years = 0
|
515 |
+
# max_years = 999
|
516 |
+
# level = 'any'
|
517 |
+
|
518 |
+
# # Check for specific year ranges
|
519 |
+
# for pattern in experience_patterns[:3]: # First 3 patterns are for ranges
|
520 |
+
# matches = re.findall(pattern, requirements_text)
|
521 |
+
# if matches:
|
522 |
+
# try:
|
523 |
+
# min_years = int(matches[0][0])
|
524 |
+
# max_years = int(matches[0][1])
|
525 |
+
# break
|
526 |
+
# except (ValueError, IndexError):
|
527 |
+
# continue
|
528 |
+
|
529 |
+
# # Check for minimum years if no range found
|
530 |
+
# if min_years == 0:
|
531 |
+
# for pattern in experience_patterns[3:6]: # Minimum year patterns
|
532 |
+
# matches = re.findall(pattern, requirements_text)
|
533 |
+
# if matches:
|
534 |
+
# try:
|
535 |
+
# min_years = int(matches[0])
|
536 |
+
# break
|
537 |
+
# except (ValueError, IndexError):
|
538 |
+
# continue
|
539 |
+
|
540 |
+
# # Check for level-based requirements
|
541 |
+
# for pattern in experience_patterns[6:10]: # Level patterns
|
542 |
+
# matches = re.findall(pattern, requirements_text)
|
543 |
+
# if matches:
|
544 |
+
# level_match = matches[0].lower()
|
545 |
+
# if 'entry' in level_match or 'junior' in level_match or 'associate' in level_match:
|
546 |
+
# level = 'entry'
|
547 |
+
# if min_years == 0:
|
548 |
+
# min_years = 0
|
549 |
+
# max_years = 2
|
550 |
+
# elif 'mid' in level_match or 'intermediate' in level_match:
|
551 |
+
# level = 'mid'
|
552 |
+
# if min_years == 0:
|
553 |
+
# min_years = 2
|
554 |
+
# max_years = 5
|
555 |
+
# elif 'senior' in level_match or 'lead' in level_match or 'principal' in level_match or 'staff' in level_match:
|
556 |
+
# level = 'senior'
|
557 |
+
# if min_years == 0:
|
558 |
+
# min_years = 5
|
559 |
+
# max_years = 10
|
560 |
+
# elif 'executive' in level_match or 'director' in level_match or 'vp' in level_match or 'chief' in level_match:
|
561 |
+
# level = 'executive'
|
562 |
+
# if min_years == 0:
|
563 |
+
# min_years = 10
|
564 |
+
# max_years = 999
|
565 |
+
# break
|
566 |
+
|
567 |
+
# # Check for specific year mentions if still no match
|
568 |
+
# if min_years == 0:
|
569 |
+
# for pattern in experience_patterns[10:]: # Specific year mention patterns
|
570 |
+
# matches = re.findall(pattern, requirements_text)
|
571 |
+
# if matches:
|
572 |
+
# try:
|
573 |
+
# min_years = int(matches[0])
|
574 |
+
# max_years = min_years + 2 # Add buffer
|
575 |
+
# break
|
576 |
+
# except (ValueError, IndexError):
|
577 |
+
# continue
|
578 |
+
|
579 |
+
# return {
|
580 |
+
# 'min_years': min_years,
|
581 |
+
# 'max_years': max_years,
|
582 |
+
# 'level': level
|
583 |
+
# }
|
584 |
+
|
585 |
+
# def filter_jobs_by_experience(jobs_df: pd.DataFrame, candidate_yoe: str) -> pd.DataFrame:
|
586 |
+
# """
|
587 |
+
# Filter jobs by experience level matching the candidate's years of experience
|
588 |
+
# """
|
589 |
+
# if not candidate_yoe or candidate_yoe.lower() in ['unknown', 'n/a', '']:
|
590 |
+
# logger.info(f"No experience info provided, returning all {len(jobs_df)} jobs")
|
591 |
+
# return jobs_df
|
592 |
+
|
593 |
+
# # Extract numeric years from candidate experience
|
594 |
+
# try:
|
595 |
+
# # Handle various formats like "5 years", "5+ years", "5-7 years", etc.
|
596 |
+
# yoe_match = re.search(r'(\d+(?:\.\d+)?)', str(candidate_yoe))
|
597 |
+
# if yoe_match:
|
598 |
+
# candidate_years = float(yoe_match.group(1))
|
599 |
+
# else:
|
600 |
+
# logger.warning(f"Could not extract years from: {candidate_yoe}")
|
601 |
+
# return jobs_df
|
602 |
+
# except (ValueError, TypeError):
|
603 |
+
# logger.error(f"Invalid experience format: {candidate_yoe}")
|
604 |
+
# return jobs_df
|
605 |
+
|
606 |
+
# logger.info(f"Filtering jobs for candidate with {candidate_years} years of experience")
|
607 |
+
|
608 |
+
# # Filter jobs by experience requirements
|
609 |
+
# matching_jobs = []
|
610 |
+
|
611 |
+
# for _, job_row in jobs_df.iterrows():
|
612 |
+
# requirements_text = str(job_row.get('requirements', ''))
|
613 |
+
# experience_req = extract_experience_requirement(requirements_text)
|
614 |
+
|
615 |
+
# # Check if candidate's experience matches the job requirements
|
616 |
+
# if (candidate_years >= experience_req['min_years'] and
|
617 |
+
# candidate_years <= experience_req['max_years']):
|
618 |
+
# matching_jobs.append(job_row)
|
619 |
+
|
620 |
+
# result_df = pd.DataFrame(matching_jobs) if matching_jobs else jobs_df
|
621 |
+
# logger.info(f"Found {len(matching_jobs)} jobs matching experience out of {len(jobs_df)} total jobs")
|
622 |
+
|
623 |
+
# return result_df
|
624 |
+
|
625 |
+
# def filter_jobs_by_priority(jobs_df: pd.DataFrame) -> pd.DataFrame:
|
626 |
+
# """
|
627 |
+
# Filter jobs to only include high priority jobs
|
628 |
+
# """
|
629 |
+
# if jobs_df.empty:
|
630 |
+
# logger.info("No jobs to filter by priority")
|
631 |
+
# return jobs_df
|
632 |
+
|
633 |
+
# # Filter jobs by priority - only include high priority jobs
|
634 |
+
# priority_filtered_jobs = jobs_df[jobs_df['priority'].str.lower() == 'high']
|
635 |
+
|
636 |
+
# logger.info(f"Found {len(priority_filtered_jobs)} high priority jobs out of {len(jobs_df)} total jobs")
|
637 |
+
|
638 |
+
# return priority_filtered_jobs
|
639 |
+
|
640 |
+
# def create_job_description(job_row: pd.Series) -> str:
|
641 |
+
# """
|
642 |
+
# Create a comprehensive job description from job data
|
643 |
+
# """
|
644 |
+
# description_parts = []
|
645 |
+
|
646 |
+
# if pd.notna(job_row.get('company_blurb')):
|
647 |
+
# description_parts.append(f"Company: {job_row['company_blurb']}")
|
648 |
+
|
649 |
+
# if pd.notna(job_row.get('company_culture')):
|
650 |
+
# description_parts.append(f"Company Culture: {job_row['company_culture']}")
|
651 |
+
|
652 |
+
# if pd.notna(job_row.get('description')):
|
653 |
+
# description_parts.append(f"Description: {job_row['description']}")
|
654 |
+
|
655 |
+
# if pd.notna(job_row.get('requirements')):
|
656 |
+
# description_parts.append(f"Requirements: {job_row['requirements']}")
|
657 |
+
|
658 |
+
# if pd.notna(job_row.get('role_responsibilities')):
|
659 |
+
# description_parts.append(f"Role Responsibilities: {job_row['role_responsibilities']}")
|
660 |
+
|
661 |
+
# if pd.notna(job_row.get('job_location')):
|
662 |
+
# description_parts.append(f"Location: {job_row['job_location']}")
|
663 |
+
|
664 |
+
# return "\n\n".join(description_parts)
|
665 |
+
|
666 |
+
# def create_jd_smart_hiring(job_row: pd.Series) -> str:
|
667 |
+
# """
|
668 |
+
# Create a smart hiring job description from job data
|
669 |
+
# """
|
670 |
+
# description_parts = []
|
671 |
+
# if pd.notna(job_row.get('description')):
|
672 |
+
# description_parts.append(f"Description: {job_row['description']}")
|
673 |
+
# if pd.notna(job_row.get('requirements')):
|
674 |
+
# description_parts.append(f"Requirements: {job_row['requirements']}")
|
675 |
+
|
676 |
+
# return "\n\n".join(description_parts)
|
677 |
+
|
678 |
+
|
679 |
+
|
680 |
+
# def clean_analysis_result(analysis_result: dict) -> dict:
|
681 |
+
# """
|
682 |
+
# Clean up the analysis result to only include final_score and summary
|
683 |
+
# """
|
684 |
+
# if not isinstance(analysis_result, dict):
|
685 |
+
# return analysis_result
|
686 |
+
|
687 |
+
# # Remove user_context if present
|
688 |
+
# if 'user_context' in analysis_result:
|
689 |
+
# del analysis_result['user_context']
|
690 |
+
|
691 |
+
# # Clean up final_response if present
|
692 |
+
# if 'final_response' in analysis_result:
|
693 |
+
# try:
|
694 |
+
# # Handle both string and dict formats
|
695 |
+
# if isinstance(analysis_result['final_response'], str):
|
696 |
+
# final_response = json.loads(analysis_result['final_response'])
|
697 |
+
# else:
|
698 |
+
# final_response = analysis_result['final_response']
|
699 |
+
|
700 |
+
# # Extract and format the evaluation data
|
701 |
+
# if 'evaluation' in final_response and len(final_response['evaluation']) > 0:
|
702 |
+
# evaluation = final_response['evaluation'][0]
|
703 |
+
|
704 |
+
# # Create a minimal structure with only final_score and summary
|
705 |
+
# cleaned_response = {
|
706 |
+
# 'final_score': evaluation.get('final_score', 0),
|
707 |
+
# 'summary': {}
|
708 |
+
# }
|
709 |
+
|
710 |
+
# # Extract summary information
|
711 |
+
# if 'summary' in evaluation and len(evaluation['summary']) > 0:
|
712 |
+
# summary = evaluation['summary'][0]
|
713 |
+
# cleaned_response['summary'] = {
|
714 |
+
# 'strengths': summary.get('strengths', []),
|
715 |
+
# 'weaknesses': summary.get('weaknesses', []),
|
716 |
+
# 'opportunities': summary.get('opportunities', []),
|
717 |
+
# 'recommendations': summary.get('recommendations', [])
|
718 |
+
# }
|
719 |
+
|
720 |
+
# analysis_result['final_response'] = cleaned_response
|
721 |
+
|
722 |
+
# except (json.JSONDecodeError, KeyError, IndexError) as e:
|
723 |
+
# logger.error(f"Error cleaning analysis result: {e}")
|
724 |
+
# # Keep original if cleaning fails
|
725 |
+
# pass
|
726 |
+
|
727 |
+
# return analysis_result
|
728 |
+
|
729 |
+
# def sort_jobs_by_score(job_analyses: list) -> list:
|
730 |
+
# """
|
731 |
+
# Sort jobs by final_score in descending order (highest scores first)
|
732 |
+
# """
|
733 |
+
# def extract_score(job_analysis):
|
734 |
+
# try:
|
735 |
+
# analysis = job_analysis.get('analysis', {})
|
736 |
+
# if 'final_response' in analysis and isinstance(analysis['final_response'], dict):
|
737 |
+
# return analysis['final_response'].get('final_score', 0)
|
738 |
+
# return 0
|
739 |
+
# except:
|
740 |
+
# return 0
|
741 |
+
|
742 |
+
# return sorted(job_analyses, key=extract_score, reverse=True)
|
743 |
+
|
744 |
+
# async def analyze_job_fit_with_retry(job_description: str, resume_file_path: str, job_row: pd.Series = None, max_retries: int = 3) -> dict:
|
745 |
+
# """
|
746 |
+
# Analyze job-candidate fit with retry logic for resilience
|
747 |
+
# """
|
748 |
+
# for attempt in range(max_retries):
|
749 |
+
# try:
|
750 |
+
# result = analyze_job_fit(job_description, resume_file_path, job_row)
|
751 |
+
# if "error" not in result:
|
752 |
+
# return result
|
753 |
+
|
754 |
+
# # If authentication error and not last attempt, retry
|
755 |
+
# if "Authentication failed" in result.get("error", "") and attempt < max_retries - 1:
|
756 |
+
# logger.warning(f"Authentication failed, retrying... (attempt {attempt + 1}/{max_retries})")
|
757 |
+
# global access_token
|
758 |
+
# access_token = None # Reset token to force refresh
|
759 |
+
# await asyncio.sleep(2 ** attempt) # Exponential backoff
|
760 |
+
# continue
|
761 |
+
|
762 |
+
# # If timeout error and not last attempt, retry with longer timeout
|
763 |
+
# if "timed out" in result.get("error", "").lower() and attempt < max_retries - 1:
|
764 |
+
# logger.warning(f"Request timed out, retrying with longer timeout... (attempt {attempt + 1}/{max_retries})")
|
765 |
+
# await asyncio.sleep(2 ** attempt) # Exponential backoff
|
766 |
+
# continue
|
767 |
+
|
768 |
+
# return result
|
769 |
+
# except Exception as e:
|
770 |
+
# logger.error(f"Attempt {attempt + 1}/{max_retries} failed: {str(e)}")
|
771 |
+
# if attempt == max_retries - 1:
|
772 |
+
# return {"error": f"Failed after {max_retries} attempts: {str(e)}"}
|
773 |
+
# await asyncio.sleep(2 ** attempt)
|
774 |
+
|
775 |
+
# def analyze_job_fit(job_description: str, resume_file_path: str, job_row: pd.Series = None) -> dict:
|
776 |
+
# """
|
777 |
+
# Analyze job-candidate fit using the external API
|
778 |
+
# """
|
779 |
+
|
780 |
+
# url = "https://fitscore-agent-535960463668.us-central1.run.app/analyze"
|
781 |
+
|
782 |
+
# # Check if resume file exists
|
783 |
+
# if not os.path.exists(resume_file_path):
|
784 |
+
# logger.error(f"Resume file not found: {resume_file_path}")
|
785 |
+
# return {"error": f"Resume file not found: {resume_file_path}"}
|
786 |
+
|
787 |
+
|
788 |
+
# # Prepare headers with authentication
|
789 |
+
# headers = {
|
790 |
+
# 'accept': 'application/json',
|
791 |
+
# 'Authorization': f'Bearer {get_access_token()}'
|
792 |
+
# }
|
793 |
+
|
794 |
+
# # Prepare form data
|
795 |
+
# files = {
|
796 |
+
# 'resume': (os.path.basename(resume_file_path), open(resume_file_path, 'rb'), 'application/pdf')
|
797 |
+
# }
|
798 |
+
|
799 |
+
# data = {
|
800 |
+
# 'jd_text': job_description
|
801 |
+
# }
|
802 |
+
|
803 |
+
# # Generate collateral if job_row is provided
|
804 |
+
# if job_row is not None:
|
805 |
+
# try:
|
806 |
+
# job_description_text = create_jd_smart_hiring(job_row)
|
807 |
+
# if job_description_text:
|
808 |
+
# collateral, job_id = generate_smart_hiring_collateral(job_description_text)
|
809 |
+
# if collateral:
|
810 |
+
# data['collateral'] = collateral
|
811 |
+
# data['job_id'] = job_id
|
812 |
+
# logger.info(f"Added collateral and job_id ({job_id}) to job fit analysis request")
|
813 |
+
# elif job_id:
|
814 |
+
# # Even if collateral is empty, we can still use the job_id
|
815 |
+
# data['job_id'] = job_id
|
816 |
+
# logger.info(f"Added job_id ({job_id}) to job fit analysis request (no collateral)")
|
817 |
+
# except Exception as e:
|
818 |
+
# logger.warning(f"Failed to generate collateral: {e}")
|
819 |
+
# # Continue without collateral if generation fails
|
820 |
+
|
821 |
+
# try:
|
822 |
+
# # Make the API request with configured timeout
|
823 |
+
# response = requests.post(url, headers=headers, files=files, data=data, timeout=EXTERNAL_API_TIMEOUT)
|
824 |
+
|
825 |
+
# # If we get an authentication error, try to get a fresh token and retry once
|
826 |
+
# if response.status_code == 401:
|
827 |
+
# logger.warning("Authentication failed, getting fresh token...")
|
828 |
+
# global access_token
|
829 |
+
# access_token = None # Reset the token
|
830 |
+
# new_token = get_access_token()
|
831 |
+
# if new_token:
|
832 |
+
# headers['Authorization'] = f'Bearer {new_token}'
|
833 |
+
# # Close the previous file and reopen
|
834 |
+
# files['resume'][1].close()
|
835 |
+
# files['resume'] = (os.path.basename(resume_file_path), open(resume_file_path, 'rb'), 'application/pdf')
|
836 |
+
# response = requests.post(url, headers=headers, files=files, data=data, timeout=EXTERNAL_API_TIMEOUT)
|
837 |
+
# else:
|
838 |
+
# # If we can't get a fresh token, return error
|
839 |
+
# return {"error": "Authentication failed and could not obtain fresh token"}
|
840 |
+
|
841 |
+
# if response.status_code == 200:
|
842 |
+
# logger.info("Job fit analysis completed successfully")
|
843 |
+
# return response.json()
|
844 |
+
# elif response.status_code == 401:
|
845 |
+
# # If we still get 401 after fresh token, return error
|
846 |
+
# return {"error": "Authentication failed even with fresh token"}
|
847 |
+
# else:
|
848 |
+
# logger.error(f"API call failed with status {response.status_code}")
|
849 |
+
# return {"error": f"API call failed with status {response.status_code}", "details": response.text}
|
850 |
+
|
851 |
+
# except requests.exceptions.Timeout:
|
852 |
+
# logger.error(f"API request timed out after {EXTERNAL_API_TIMEOUT} seconds")
|
853 |
+
# return {"error": f"API request timed out after {EXTERNAL_API_TIMEOUT} seconds"}
|
854 |
+
# except Exception as e:
|
855 |
+
# logger.error(f"Exception occurred: {str(e)}")
|
856 |
+
# return {"error": f"Exception occurred: {str(e)}"}
|
857 |
+
# finally:
|
858 |
+
# # Ensure the file is closed
|
859 |
+
# if 'resume' in files:
|
860 |
+
# try:
|
861 |
+
# files['resume'][1].close()
|
862 |
+
# except:
|
863 |
+
# pass
|
864 |
+
|
865 |
+
# @app.post("/process_resume_and_recommend_jobs")
|
866 |
+
# async def process_resume_and_recommend_jobs(
|
867 |
+
# resume: UploadFile = File(...),
|
868 |
+
# resume_text: str = Form(""),
|
869 |
+
# api_key: str = Depends(verify_api_key)
|
870 |
+
# ):
|
871 |
+
# """
|
872 |
+
# Process resume, extract information, filter jobs by industry, and analyze fit
|
873 |
+
# """
|
874 |
+
# request_start_time = time.time()
|
875 |
+
|
876 |
+
# try:
|
877 |
+
# logger.info(f"Processing resume: {resume.filename}")
|
878 |
+
|
879 |
+
# # Save uploaded file temporarily
|
880 |
+
# with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
|
881 |
+
# shutil.copyfileobj(resume.file, tmp_file)
|
882 |
+
# tmp_file_path = tmp_file.name
|
883 |
+
|
884 |
+
# try:
|
885 |
+
# # Extract text from PDF if no resume_text provided
|
886 |
+
# if not resume_text:
|
887 |
+
# resume_text = extract_text_from_pdf(tmp_file_path)
|
888 |
+
# if not resume_text:
|
889 |
+
# logger.error("Could not extract text from PDF file")
|
890 |
+
# return JSONResponse(
|
891 |
+
# status_code=400,
|
892 |
+
# content={"error": "Could not extract text from PDF file"}
|
893 |
+
# )
|
894 |
+
|
895 |
+
# # Extract resume information using LLM
|
896 |
+
# resume_info = extract_resume_info(resume_text)
|
897 |
+
|
898 |
+
# # Load jobs data from PostgreSQL database
|
899 |
+
# try:
|
900 |
+
# jobs_df = pd.read_sql_table("jobs", con=engine)
|
901 |
+
# candidates_df = pd.read_sql_table("candidates", con=engine)
|
902 |
+
# submissions_df = pd.read_sql_table("candidate_submissions", con=engine)
|
903 |
+
# logger.info(f"Loaded {len(jobs_df)} jobs, {len(candidates_df)} candidates, {len(submissions_df)} submissions")
|
904 |
+
# except Exception as db_error:
|
905 |
+
# logger.error(f"Database error: {db_error}")
|
906 |
+
# return JSONResponse(
|
907 |
+
# status_code=500,
|
908 |
+
# content={"error": "Database connection error"}
|
909 |
+
# )
|
910 |
+
|
911 |
+
# # Filter jobs by industry
|
912 |
+
# filtered_jobs = filter_jobs_by_industry(jobs_df, resume_info['industry'])
|
913 |
+
|
914 |
+
# if filtered_jobs.empty:
|
915 |
+
# logger.warning(f"No jobs found for industry: {resume_info['industry']}")
|
916 |
+
# return JSONResponse(
|
917 |
+
# status_code=404,
|
918 |
+
# content={"message": f"No jobs found for industry: {resume_info['industry']}"}
|
919 |
+
# )
|
920 |
+
|
921 |
+
# # Filter jobs by location
|
922 |
+
# location_filtered_jobs = filter_jobs_by_location(filtered_jobs, resume_info['location'])
|
923 |
+
|
924 |
+
# # Filter jobs by experience level
|
925 |
+
# experience_filtered_jobs = filter_jobs_by_experience(location_filtered_jobs, resume_info['yoe'])
|
926 |
+
|
927 |
+
# # Filter jobs by priority
|
928 |
+
# priority_filtered_jobs = filter_jobs_by_priority(experience_filtered_jobs)
|
929 |
+
|
930 |
+
# # Use priority filtered jobs if available, otherwise fall back to experience filtered jobs, then location filtered jobs
|
931 |
+
# if not priority_filtered_jobs.empty:
|
932 |
+
# jobs_to_analyze = priority_filtered_jobs
|
933 |
+
# elif not experience_filtered_jobs.empty:
|
934 |
+
# jobs_to_analyze = experience_filtered_jobs
|
935 |
+
# else:
|
936 |
+
# jobs_to_analyze = location_filtered_jobs
|
937 |
+
|
938 |
+
# # Create filtered_submission_df with job_ids from jobs_to_analyze
|
939 |
+
# job_ids_to_analyze = jobs_to_analyze['id'].tolist()
|
940 |
+
# filtered_submission_df = submissions_df[submissions_df['jobId'].isin(job_ids_to_analyze)]
|
941 |
+
|
942 |
+
# # Check if candidate email exists in candidates_df
|
943 |
+
# candidate_id = None
|
944 |
+
# if resume_info.get('email'):
|
945 |
+
# candidate_match = candidates_df[candidates_df['email'] == resume_info['email']]
|
946 |
+
# if not candidate_match.empty:
|
947 |
+
# candidate_id = candidate_match.iloc[0]['id']
|
948 |
+
# logger.info(f"Found existing candidate with ID: {candidate_id}")
|
949 |
+
|
950 |
+
# # Analyze job fit for each filtered job
|
951 |
+
# job_analyses = []
|
952 |
+
|
953 |
+
# # Use configured number of jobs to analyze
|
954 |
+
# for _, job_row in jobs_to_analyze.head(MAX_JOBS_TO_ANALYZE).iterrows():
|
955 |
+
# job_id = job_row.get('id')
|
956 |
+
|
957 |
+
# # Check if we have an existing submission for this candidate and job
|
958 |
+
# existing_submission = None
|
959 |
+
# if candidate_id and job_id:
|
960 |
+
# submission_match = filtered_submission_df[
|
961 |
+
# (filtered_submission_df['candidate_id'] == candidate_id) &
|
962 |
+
# (filtered_submission_df['jobId'] == job_id)
|
963 |
+
# ]
|
964 |
+
# if not submission_match.empty:
|
965 |
+
# existing_submission = submission_match.iloc[0]
|
966 |
+
# logger.info(f"Found existing submission for job_id: {job_id}, candidate_id: {candidate_id}")
|
967 |
+
|
968 |
+
# if existing_submission is not None:
|
969 |
+
# # Use existing fit score from submission
|
970 |
+
# fit_score = existing_submission.get('fit_score', 0)
|
971 |
+
# existing_analysis = {
|
972 |
+
# 'final_response': {
|
973 |
+
# 'final_score': fit_score,
|
974 |
+
# 'summary': {
|
975 |
+
# 'strengths': [],
|
976 |
+
# 'weaknesses': [],
|
977 |
+
# 'opportunities': [],
|
978 |
+
# 'recommendations': []
|
979 |
+
# }
|
980 |
+
# },
|
981 |
+
# 'source': 'existing_submission'
|
982 |
+
# }
|
983 |
+
# analysis_result = existing_analysis
|
984 |
+
# else:
|
985 |
+
# # Call API for new analysis with retry logic
|
986 |
+
# job_description = create_job_description(job_row)
|
987 |
+
# analysis_result = await analyze_job_fit_with_retry(job_description, tmp_file_path, job_row)
|
988 |
+
# analysis_result['source'] = 'api_call'
|
989 |
+
|
990 |
+
# # Clean up the analysis result
|
991 |
+
# cleaned_analysis = clean_analysis_result(analysis_result)
|
992 |
+
|
993 |
+
# job_analysis = JobAnalysis(
|
994 |
+
# job_title=job_row.get('job_title', 'Unknown'),
|
995 |
+
# company_name=job_row.get('company_name', 'Unknown'),
|
996 |
+
# analysis=cleaned_analysis
|
997 |
+
# )
|
998 |
+
# job_analyses.append(job_analysis.dict())
|
999 |
+
|
1000 |
+
# # Sort jobs by final_score in descending order (highest scores first)
|
1001 |
+
# job_analyses = sort_jobs_by_score(job_analyses)
|
1002 |
+
|
1003 |
+
# # Count existing submissions vs API calls
|
1004 |
+
# existing_submissions_count = sum(1 for analysis in job_analyses if analysis.get('analysis', {}).get('source') == 'existing_submission')
|
1005 |
+
# api_calls_count = sum(1 for analysis in job_analyses if analysis.get('analysis', {}).get('source') == 'api_call')
|
1006 |
+
|
1007 |
+
# # Clean up temporary file
|
1008 |
+
# os.unlink(tmp_file_path)
|
1009 |
+
|
1010 |
+
# # Calculate processing time
|
1011 |
+
# processing_time = time.time() - request_start_time
|
1012 |
+
# logger.info(f"Request completed in {processing_time:.2f} seconds")
|
1013 |
+
|
1014 |
+
# return {
|
1015 |
+
# "resume_info": resume_info,
|
1016 |
+
# "industry": resume_info['industry'],
|
1017 |
+
# "location": resume_info['location'],
|
1018 |
+
# "experience_years": resume_info['yoe'],
|
1019 |
+
# "jobs_analyzed": len(job_analyses),
|
1020 |
+
# "location_filtered": not location_filtered_jobs.empty,
|
1021 |
+
# "experience_filtered": not experience_filtered_jobs.empty,
|
1022 |
+
# "priority_filtered": not priority_filtered_jobs.empty,
|
1023 |
+
# "existing_submissions_used": existing_submissions_count,
|
1024 |
+
# "api_calls_made": api_calls_count,
|
1025 |
+
# "candidate_found": candidate_id is not None,
|
1026 |
+
# "processing_time_seconds": round(processing_time, 2),
|
1027 |
+
# "job_analyses": job_analyses
|
1028 |
+
# }
|
1029 |
+
|
1030 |
+
# except Exception as e:
|
1031 |
+
# # Clean up temporary file in case of error
|
1032 |
+
# if os.path.exists(tmp_file_path):
|
1033 |
+
# os.unlink(tmp_file_path)
|
1034 |
+
# raise e
|
1035 |
+
|
1036 |
+
# except Exception as e:
|
1037 |
+
# logger.error(f"Processing failed: {str(e)}", exc_info=True)
|
1038 |
+
# return JSONResponse(
|
1039 |
+
# status_code=500,
|
1040 |
+
# content={"error": f"Processing failed: {str(e)}"}
|
1041 |
+
# )
|
1042 |
+
|
1043 |
+
# @app.get("/health")
|
1044 |
+
# async def health_check(api_key: str = Depends(verify_api_key)):
|
1045 |
+
# """
|
1046 |
+
# Health check endpoint with database connectivity check
|
1047 |
+
# """
|
1048 |
+
# health_status = {
|
1049 |
+
# "status": "healthy",
|
1050 |
+
# "message": "Job Recommendation API is running",
|
1051 |
+
# "timestamp": time.time()
|
1052 |
+
# }
|
1053 |
+
|
1054 |
+
# # Check database connectivity
|
1055 |
+
# try:
|
1056 |
+
# with engine.connect() as conn:
|
1057 |
+
# result = conn.execute(text("SELECT 1"))
|
1058 |
+
# health_status["database"] = "connected"
|
1059 |
+
# except Exception as e:
|
1060 |
+
# logger.error(f"Database health check failed: {e}")
|
1061 |
+
# health_status["database"] = "disconnected"
|
1062 |
+
# health_status["status"] = "degraded"
|
1063 |
+
|
1064 |
+
# return health_status
|
1065 |
+
|
1066 |
+
# @app.get("/")
|
1067 |
+
# async def root():
|
1068 |
+
# """
|
1069 |
+
# Root endpoint
|
1070 |
+
# """
|
1071 |
+
# return {
|
1072 |
+
# "message": "Job Recommendation API",
|
1073 |
+
# "version": "1.0.0",
|
1074 |
+
# "docs": "/docs",
|
1075 |
+
# "health": "/health"
|
1076 |
+
# }
|
1077 |
+
|
1078 |
+
# if __name__ == "__main__":
|
1079 |
+
# import uvicorn
|
1080 |
+
# port = int(os.getenv("PORT", 8080))
|
1081 |
+
# logger.info(f"Starting server on port {port}")
|
1082 |
+
# uvicorn.run(app, host="0.0.0.0", port=port)
|
1083 |
+
|
1084 |
+
|
1085 |
+
|
1086 |
import pandas as pd
|
1087 |
import requests
|
1088 |
from pydantic import BaseModel, Field
|
|
|
1232 |
return access_token
|
1233 |
|
1234 |
try:
|
1235 |
+
login_url = str(os.getenv("login_url"))
|
1236 |
login_data = {
|
1237 |
+
"email": str(os.getenv("email")),
|
1238 |
+
"password": str(os.getenv("password"))
|
1239 |
}
|
1240 |
login_headers = {
|
1241 |
'accept': 'application/json',
|
|
|
1243 |
}
|
1244 |
|
1245 |
# Add timeout to prevent hanging
|
1246 |
+
login_response = requests.post(login_url, headers=login_headers, json=login_data, timeout=None)
|
1247 |
|
1248 |
if login_response.status_code == 200:
|
1249 |
login_result = login_response.json()
|
|
|
1273 |
Returns a tuple of (collateral, job_id)
|
1274 |
"""
|
1275 |
try:
|
1276 |
+
url = str(os.getenv("smart_hiring_url"))
|
1277 |
|
1278 |
# Generate a unique job ID using UUID
|
1279 |
job_id = str(uuid.uuid4())
|
|
|
1291 |
}
|
1292 |
|
1293 |
# Make the API request
|
1294 |
+
response = requests.post(url, headers=headers, data=payload, timeout=None)
|
1295 |
|
1296 |
if response.status_code == 200:
|
1297 |
logger.info("Smart hiring collateral generated successfully")
|
|
|
1319 |
new_token = get_access_token()
|
1320 |
if new_token:
|
1321 |
headers['Authorization'] = f'Bearer {new_token}'
|
1322 |
+
response = requests.post(url, headers=headers, data=payload, timeout=None)
|
1323 |
if response.status_code == 200:
|
1324 |
logger.info("Smart hiring collateral generated successfully with fresh token")
|
1325 |
# Parse the response to extract smart_hiring_criteria
|
|
|
1862 |
Analyze job-candidate fit using the external API
|
1863 |
"""
|
1864 |
|
1865 |
+
url = str(os.getenv("analyze_url"))
|
1866 |
|
1867 |
# Check if resume file exists
|
1868 |
if not os.path.exists(resume_file_path):
|
|
|
1905 |
|
1906 |
try:
|
1907 |
# Make the API request with configured timeout
|
1908 |
+
response = requests.post(url, headers=headers, files=files, data=data, timeout=None)
|
1909 |
+
|
1910 |
# If we get an authentication error, try to get a fresh token and retry once
|
1911 |
if response.status_code == 401:
|
1912 |
logger.warning("Authentication failed, getting fresh token...")
|
|
|
1918 |
# Close the previous file and reopen
|
1919 |
files['resume'][1].close()
|
1920 |
files['resume'] = (os.path.basename(resume_file_path), open(resume_file_path, 'rb'), 'application/pdf')
|
1921 |
+
response = requests.post(url, headers=headers, files=files, data=data, timeout=None)
|
1922 |
else:
|
1923 |
# If we can't get a fresh token, return error
|
1924 |
return {"error": "Authentication failed and could not obtain fresh token"}
|