Spaces:
Sleeping
Sleeping
File size: 19,083 Bytes
a413aeb 75d66f3 1f3ebcc 75d66f3 f1ace55 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 1f3ebcc 75d66f3 a413aeb 75d66f3 1f3ebcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import streamlit as st
import pandas as pd
import PyPDF2
import os
from google.oauth2 import service_account
import gspread
from pydantic import BaseModel, Field
from typing import List
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
import time
import re
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 1) ENVIRONMENT VARIABLES / SECRETS
#
# On Huggingface Spaces:
# - Go to your Spaceβs Settings β Secrets and add:
# β’ OPENAI_API_KEY = yourβopenaiβkey
# β’ GOOGLE_API_KEY = yourβgoogleβkey (if you use any Google LLM)
# - If you also need a Google Service Account JSON, either:
# a) Commit it (careful: that is public by default β only do so if itβs nonβsensitive!),
# b) Or add it as βRepository Filesβ via the βFiles & versionsβ tab,
# c) Or load it from a Secret.
#
# In code below, weβll assume the serviceβaccount JSON is committed under:
# ββ synapse-recruitment-34e7b48899b4.json
#
# If you instead want to load it from a singleβline environment variable, you can do:
# service_account_info = json.loads(os.getenv("GOOGLE_SERVICE_ACCOUNT_JSON"))
# creds = service_account.Credentials.from_service_account_info(service_account_info, scopes=SCOPES)
#
# For now, weβll simply use:
# SERVICE_ACCOUNT_FILE = "synapse-recruitment-34e7b48899b4.json"
#
# And expect that file to be present in the topβlevel of your repo/Space.
#
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY", "")
if OPENAI_API_KEY == "":
st.warning("β οΈ OPENAI_API_KEY is not set. The LLM calls will fail unless you add it under Secrets.")
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 2) Pydantic models for structured output
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
class structure(BaseModel):
name: str = Field(description="Name of the candidate")
location: str = Field(description="The location of the candidate.")
skills: List[str] = Field(description="List of individual skills of the candidate")
ideal_jobs: str = Field(description="List of ideal jobs for the candidate based on past experience.")
yoe: str = Field(description="Years of experience of the candidate.")
experience: str = Field(description="A brief summary of the candidate's past experience.")
class Job(BaseModel):
job_title: str = Field(description="The title of the job.")
company: str = Field(description="The company offering the job.")
location: str = Field(description="The location of the job.")
skills: List[str] = Field(description="List of skills required for the job.")
description: str = Field(description="A brief description of the job.")
relevance_score: float = Field(description="Relevance score of the job to the candidate's resume.")
justification: str = Field(description = "Reason for giving this relevance score and what all areas need to be improved by the candidate")
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 3) Helper: parse a commaβseparated βTech Stackβ string into a Python set
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def parse_tech_stack(stack):
if pd.isna(stack) or stack == "" or stack is None:
return set()
if isinstance(stack, set):
return stack
try:
# If it's literally a Pythonβset string like "{'python','django'}"
if isinstance(stack, str) and stack.startswith("{") and stack.endswith("}"):
items = stack.strip("{}").split(",")
return set(item.strip().strip("'\"").lower() for item in items if item.strip())
# Otherwise assume commaβseparated values
return set(s.strip().lower() for s in str(stack).split(",") if s.strip())
except Exception as e:
st.error(f"Error parsing tech stack: {e}")
return set()
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 4) Google Sheets initialization (Service Account JSON must be present in repo)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def initialize_google_sheets():
SERVICE_ACCOUNT_FILE = "synapse-recruitment-34e7b48899b4.json"
SCOPES = ["https://www.googleapis.com/auth/spreadsheets"]
if not os.path.exists(SERVICE_ACCOUNT_FILE):
st.error(f"Service account file not found at '{SERVICE_ACCOUNT_FILE}'.\n"
"Either commit it into the repo or load from a Secret.")
return None
try:
creds = service_account.Credentials.from_service_account_file(
SERVICE_ACCOUNT_FILE, scopes=SCOPES
)
return gspread.authorize(creds)
except Exception as e:
st.error(f"Failed to load Google Service Account credentials: {e}")
return None
def load_jobs_data():
gc = initialize_google_sheets()
if gc is None:
return None
try:
# NOTE: Replace this key with your actual spreadsheet key
SPREADSHEET_KEY = "1BZlvbtFyiQ9Pgr_lpepDJua1ZeVEqrCLjssNd6OiG9k"
worksheet = gc.open_by_key(SPREADSHEET_KEY).worksheet("paraform_jobs_formatted")
all_values = worksheet.get_all_values()
if not all_values or len(all_values) < 2:
st.warning("No data found in the Jobs sheet.")
return None
df = pd.DataFrame(all_values[1:], columns=all_values[0]).fillna("")
# Add a βparsed_stackβ column so we can preβfilter by skill overlap
df["parsed_stack"] = df["Tech Stack"].apply(parse_tech_stack)
return df
except Exception as e:
st.error(f"Error loading jobs data from Google Sheets: {e}")
return None
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 5) PDF β plain text
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def extract_text_from_pdf(pdf_file):
try:
reader = PyPDF2.PdfReader(pdf_file)
full_text = ""
for page in reader.pages:
text = page.extract_text()
if text:
full_text += text + "\n"
return full_text
except Exception as e:
st.error(f"Failed to read PDF: {e}")
return ""
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 6) Call GPTβ4oβmini to extract structured fields from resume text
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def structure_resume_data(resume_text: str) -> structure:
llm = ChatOpenAI(
model="gpt-4o-mini",
temperature=0.0,
max_retries=2,
)
sum_llm = llm.with_structured_output(structure)
prompt = ChatPromptTemplate.from_messages([
("system", "You are a helper that extracts structured data from a resume."),
("human", "Extract the following fields from this resume:\n{resume_text}\n"
"If any field is missing, return βUnknownβ.")
])
try:
parsed = (prompt | sum_llm).invoke({"resume_text": resume_text})
return parsed
except Exception as e:
st.error(f"Failed to extract structure from resume: {e}")
# Return a fallback with βUnknownβ fields
return structure(
name="Unknown",
location="Unknown",
skills=[],
ideal_jobs="Unknown",
yoe="Unknown",
experience="Unknown"
)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 7) Evaluate jobs: Preβfilter by requiring at least two overlapping skills,
# then run an LLM loop (with a βStopβ check on each iteration)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def eval_jobs(jobs_df: pd.DataFrame, resume_text: str) -> pd.DataFrame:
"""
1) Extract candidate info (list of skills, etc.)
2) Build a skillβset from response.skills
3) Preβfilter all jobs so that jobβs Tech Stack has β₯2 skills in common
4) For that filtered subset, run an LLM evaluation loop
β on each iteration, check `st.session_state.evaluation_running`:
if it has become False, break out immediately.
5) Return a DataFrame of topβ10 results (or empty if none).
"""
response = structure_resume_data(resume_text)
candidate_skills = set(skill.lower() for skill in response.skills)
# How many overlapping skills does each job have?
def matching_skill_count(tech_stack: str) -> int:
job_skills = set(s.strip().lower() for s in tech_stack.split(",") if s.strip())
return len(candidate_skills & job_skills)
jobs_df["matching_skills"] = jobs_df["Tech Stack"].apply(matching_skill_count)
filtered = jobs_df[jobs_df["matching_skills"] >= 2].copy()
if filtered.empty:
st.warning("No jobs passed the 2-skill pre-filter.")
return pd.DataFrame()
# Build a candidate_text blob for the LLM to consume
candidate_text = (
f"{response.name} {response.location} "
f"{', '.join(response.skills)} {response.ideal_jobs} "
f"{response.yoe} {response.experience}"
)
# LLM setup for jobβevaluation
llm = ChatOpenAI(
model="gpt-4o-mini",
temperature=0.0,
max_retries=2,
)
eval_llm = llm.with_structured_output(Job)
system_msg = (
"You are an expert recruiter. First, filter by location & experience. "
"Then pick jobs that match the candidateβs skills & background. "
"Finally, assign a relevance score (0β10)."
)
prompt = ChatPromptTemplate.from_messages([
("system", system_msg),
("human", "Evaluate Job: {job_text}\nCandidate: {candidate_text}\n"
"Return JSON with job_title, company, location, skills, description, relevance_score.")
])
chain = prompt | eval_llm
jobs_for_eval = filtered[["Company", "Role", "Locations", "parsed_stack", "YOE", "matching_skills"]]
results = []
progress_bar = st.progress(0)
status_text = st.empty()
total = len(jobs_for_eval)
for i, row in enumerate(jobs_for_eval.itertuples(), start=1):
# If the user clicked βStop Evaluationβ β evaluation_running = False
if not st.session_state.evaluation_running:
status_text.text("βΈοΈ Evaluation halted by user.")
break
progress_bar.progress(i / total)
status_text.text(f"Evaluating job {i}/{total}: {row.Role} at {row.Company}")
job_text = " ".join([
row.Role,
row.Company,
row.Locations,
", ".join(row.parsed_stack),
str(row.YOE)
])
try:
eval_job = chain.invoke({
"job_text": job_text,
"candidate_text": candidate_text
})
except Exception as e:
st.error(f"LLM failed on job #{i}: {e}")
# Skip this job and continue
continue
results.append({
"job_title": eval_job.job_title,
"company": eval_job.company,
"location": eval_job.location,
"skills": eval_job.skills,
"description": eval_job.description,
"relevance_score": eval_job.relevance_score,
"matching_skills": row.matching_skills
})
# Simulate a delay so you can see the Stop button in action
time.sleep(0.5)
progress_bar.empty()
status_text.empty()
if not results:
return pd.DataFrame()
df_results = pd.DataFrame(results)
# Sort first by matching_skills desc, then by relevance_score desc, take top 10
df_results = df_results.sort_values(
by=["matching_skills", "relevance_score"],
ascending=[False, False]
).head(10)
return df_results
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 8) Clean rΓ©sumΓ© text (lowercase, strip special chars)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def preprocess_text(text: str) -> str:
return re.sub(r"[^a-zA-Z\s]", "", text.lower())
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 9) Streamlit UI
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def main():
st.title("π Resume Evaluator & Job Recommender")
# 9.1) Initialize session state flags
if "evaluation_running" not in st.session_state:
st.session_state.evaluation_running = False
if "evaluation_complete" not in st.session_state:
st.session_state.evaluation_complete = False
# 9.2) File uploader
uploaded_file = st.file_uploader(
"Upload your resume (PDF)",
type=["pdf"],
help="After picking a PDF, click βGenerate Recommendationsβ below."
)
# 9.3) Always show BOTH βGenerate Recommendationsβ and βStop Evaluationβ in two columns
col1, col2 = st.columns(2)
with col1:
if st.session_state.evaluation_running:
st.button("Generate Recommendations", disabled=True)
else:
if st.button("Generate Recommendations"):
# 9.4) User clicked βGenerateβ β begin
st.session_state.evaluation_running = True
st.session_state.evaluation_complete = False
# 9.5) Ensure a file was actually uploaded
if uploaded_file is None:
st.error("β Please upload a PDF before clicking βGenerate Recommendationsβ.")
st.session_state.evaluation_running = False
else:
# Debug: print basic type of what streamlit handed us
st.write(f"βΆοΈ Received file of type: `{type(uploaded_file)}`")
# 9.6) Load job sheet
jobs_df = load_jobs_data()
if jobs_df is None:
st.session_state.evaluation_running = False
return
# 9.7) Extract text from the PDF
raw_text = extract_text_from_pdf(uploaded_file)
if not raw_text.strip():
st.error("β οΈ The uploaded PDF appears to contain no extractable text.")
st.session_state.evaluation_running = False
return
cleaned = preprocess_text(raw_text)
st.success("β
Resume text extracted successfully!")
# 9.8) Run the lengthy eval loop inside a spinner
with st.spinner("Evaluating jobsβ¦"):
recommendations = eval_jobs(jobs_df, cleaned)
# 9.9) Show results (or warning if none)
if not recommendations.empty:
st.header("Recommended Jobs")
st.dataframe(recommendations)
st.session_state.evaluation_complete = True
else:
st.warning("No matching jobs found or evaluation was halted midβstream.")
# 9.10) Done (or halted)
st.session_state.evaluation_running = False
with col2:
# The βStop Evaluationβ button is only enabled while evaluation_running is True:
if st.session_state.evaluation_running:
if st.button("Stop Evaluation"):
st.session_state.evaluation_running = False
st.warning("βΈοΈ User requested to stop evaluation.")
else:
st.button("Stop Evaluation", disabled=True)
# 9.11) Once complete, allow βTry Another Resumeβ to reset
if st.session_state.evaluation_complete:
if st.button("Try Another Resume"):
st.session_state.evaluation_complete = False
st.experimental_rerun()
if __name__ == "__main__":
main()
|