#!//home/aaron/gradio_test/bin/python ### βœ… Example: Pull Random Records Based on Dataset Size # #Here’s a complete Python example using Hugging Face's `datasets` library: # from datasets import load_dataset import random # Set seed for reproducibility (optional) random.seed(42) # Load dataset from Hugging Face dataset = load_dataset("ajsbsd/14400") train_dataset = dataset["train"] # Get total number of records total_records = len(train_dataset) print(f"Total records in dataset: {total_records}\n") # Ask user how many random samples they want #num_samples = int(input("How many random records would you like to see? ")) num_samples = total_records # Ensure valid input if num_samples <= 0 or num_samples > total_records: print(f"Please enter a number between 1 and {total_records}.") else: # Generate random indices random_indices = random.sample(range(total_records), num_samples) # Print random records for i, idx in enumerate(random_indices, 1): record = train_dataset[idx] print(f"--- Record #{i} (Index: {idx}) ---") print(f"ID: {record['id']}") print(f"Text:\n{record['text']}\n") ### 🧠 What This Does # # Loads the dataset # Gets the total number of records automatically # Asks the user how many random entries they want to see # Picks that many random rows and prints them # ### πŸ” Example Run # #Total records in dataset: 256 # #How many random records would you like to see? 5 # #--- Record #1 (Index: 203) --- #ID: 204 #Text: #It was the... # #--- Record #2 (Index: 15) --- #ID: 16 #Text: #The period... # # ### πŸ“Œ Want to Do This Without User Input? # #You can hardcode the number of samples: # #num_samples = 5 # #Or make it part of a function: # # #def get_random_samples(dataset, num_samples): # total = len(dataset) # indices = random.sample(range(total), num_samples) # return [dataset[i] for i in indices]