|
import os |
|
import gradio as gr |
|
import torch |
|
import tempfile |
|
import asyncio |
|
import edge_tts |
|
from pydub import AudioSegment |
|
from threading import Thread |
|
from collections.abc import Iterator |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
|
|
DESCRIPTION = """ |
|
# QwQ Tiny with Edge TTS (MP3 Output) |
|
""" |
|
|
|
MAX_MAX_NEW_TOKENS = 2048 |
|
DEFAULT_MAX_NEW_TOKENS = 1024 |
|
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
model_id = "prithivMLmods/FastThink-0.5B-Tiny" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
) |
|
model.eval() |
|
|
|
async def text_to_speech(text: str) -> str: |
|
"""Converts text to speech using Edge TTS, converts WAV to MP3, and returns the MP3 file path.""" |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_wav: |
|
wav_path = tmp_wav.name |
|
|
|
communicate = edge_tts.Communicate(text) |
|
await communicate.save(wav_path) |
|
|
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_mp3: |
|
mp3_path = tmp_mp3.name |
|
|
|
audio = AudioSegment.from_wav(wav_path) |
|
audio.export(mp3_path, format="mp3") |
|
|
|
os.remove(wav_path) |
|
return mp3_path |
|
|
|
def generate( |
|
message: str, |
|
chat_history: list[dict], |
|
max_new_tokens: int = 1024, |
|
temperature: float = 0.6, |
|
top_p: float = 0.9, |
|
top_k: int = 50, |
|
repetition_penalty: float = 1.2, |
|
) -> Iterator[str] | str: |
|
|
|
is_tts = message.strip().startswith("edgetts@tts") |
|
is_text_only = message.strip().startswith("@text") |
|
|
|
|
|
if is_tts: |
|
message = message.replace("edgetts@tts", "").strip() |
|
elif is_text_only: |
|
message = message.replace("@text", "").strip() |
|
|
|
conversation = [*chat_history, {"role": "user", "content": message}] |
|
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") |
|
|
|
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: |
|
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] |
|
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") |
|
|
|
input_ids = input_ids.to(model.device) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = { |
|
"input_ids": input_ids, |
|
"streamer": streamer, |
|
"max_new_tokens": max_new_tokens, |
|
"do_sample": True, |
|
"top_p": top_p, |
|
"top_k": top_k, |
|
"temperature": temperature, |
|
"num_beams": 1, |
|
"repetition_penalty": repetition_penalty, |
|
} |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
|
|
final_output = "".join(outputs) |
|
|
|
|
|
if is_tts: |
|
loop = asyncio.new_event_loop() |
|
asyncio.set_event_loop(loop) |
|
audio_path = loop.run_until_complete(text_to_speech(final_output)) |
|
return audio_path |
|
|
|
return final_output |
|
|
|
demo = gr.ChatInterface( |
|
fn=generate, |
|
additional_inputs=[ |
|
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), |
|
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), |
|
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), |
|
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), |
|
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), |
|
], |
|
stop_btn=None, |
|
examples=[ |
|
["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"], |
|
["@text What is AI?"], |
|
["edgetts@tts Explain Newton's third law of motion."], |
|
["@text Rewrite the following sentence in passive voice: 'The dog chased the cat.'"], |
|
], |
|
cache_examples=False, |
|
type="messages", |
|
description=DESCRIPTION, |
|
fill_height=True, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |