|
import os |
|
from collections.abc import Iterator |
|
from threading import Thread |
|
import gradio as gr |
|
import spaces |
|
import torch |
|
import edge_tts |
|
import asyncio |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
|
|
DESCRIPTION = """ |
|
# QwQ Edge 💬 |
|
""" |
|
|
|
css = ''' |
|
h1 { |
|
text-align: center; |
|
display: block; |
|
} |
|
|
|
#duplicate-button { |
|
margin: auto; |
|
color: #fff; |
|
background: #1565c0; |
|
border-radius: 100vh; |
|
} |
|
''' |
|
|
|
MAX_MAX_NEW_TOKENS = 2048 |
|
DEFAULT_MAX_NEW_TOKENS = 1024 |
|
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
model_id = "prithivMLmods/FastThink-0.5B-Tiny" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
) |
|
model.eval() |
|
|
|
TTS_VOICES = [ |
|
"en-US-JennyNeural", |
|
"en-US-GuyNeural", |
|
"en-US-AriaNeural", |
|
"en-US-DavisNeural", |
|
"en-US-JaneNeural", |
|
"en-US-JasonNeural", |
|
"en-US-NancyNeural", |
|
"en-US-TonyNeural", |
|
] |
|
|
|
async def text_to_speech(text: str, voice: str, output_file="output.mp3"): |
|
"""Convert text to speech using Edge TTS and save as MP3""" |
|
communicate = edge_tts.Communicate(text, voice) |
|
await communicate.save(output_file) |
|
return output_file |
|
|
|
@spaces.GPU |
|
def generate( |
|
message: str, |
|
chat_history: list[dict], |
|
max_new_tokens: int = 1024, |
|
temperature: float = 0.6, |
|
top_p: float = 0.9, |
|
top_k: int = 50, |
|
repetition_penalty: float = 1.2, |
|
): |
|
"""Generates chatbot response and handles TTS requests""" |
|
tts_prefix = "@tts" |
|
is_tts = any(message.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 9)) |
|
voice_index = next((i for i in range(1, 9) if message.strip().lower().startswith(f"{tts_prefix}{i}")), None) |
|
|
|
if is_tts and voice_index: |
|
voice = TTS_VOICES[voice_index - 1] |
|
message = message.replace(f"{tts_prefix}{voice_index}", "").strip() |
|
else: |
|
voice = None |
|
message = message.replace(tts_prefix, "").strip() |
|
|
|
conversation = [*chat_history, {"role": "user", "content": message}] |
|
|
|
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") |
|
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: |
|
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] |
|
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") |
|
input_ids = input_ids.to(model.device) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
{"input_ids": input_ids}, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
top_p=top_p, |
|
top_k=top_k, |
|
temperature=temperature, |
|
num_beams=1, |
|
repetition_penalty=repetition_penalty, |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
yield "".join(outputs) |
|
|
|
final_response = "".join(outputs) |
|
|
|
if is_tts and voice: |
|
output_file = asyncio.run(text_to_speech(final_response, voice)) |
|
yield gr.Audio(output_file, autoplay=True) |
|
else: |
|
yield final_response |
|
|
|
demo = gr.ChatInterface( |
|
fn=generate, |
|
additional_inputs=[ |
|
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), |
|
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), |
|
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), |
|
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), |
|
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), |
|
], |
|
stop_btn=None, |
|
examples=[ |
|
["@tts1 Who is Nikola Tesla, and why did he die?"], |
|
["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"], |
|
["Write a Python function to check if a number is prime."], |
|
["@tts2 What causes rainbows to form?"], |
|
["Rewrite the following sentence in passive voice: 'The dog chased the cat.'"], |
|
["@tts5 What is the capital of France?"], |
|
], |
|
cache_examples=False, |
|
type="messages", |
|
description=DESCRIPTION, |
|
css=css, |
|
fill_height=True, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |