|
import os |
|
from collections.abc import Iterator |
|
from threading import Thread |
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
from typing import List, Dict, Optional, Tuple |
|
|
|
DESCRIPTION = """ |
|
# QwQ Distill |
|
""" |
|
|
|
css = ''' |
|
h1 { |
|
text-align: center; |
|
display: block; |
|
} |
|
|
|
#duplicate-button { |
|
margin: auto; |
|
color: #fff; |
|
background: #1565c0; |
|
border-radius: 100vh; |
|
} |
|
''' |
|
|
|
MAX_MAX_NEW_TOKENS = 2048 |
|
DEFAULT_MAX_NEW_TOKENS = 1024 |
|
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
model_id = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
) |
|
model.config.sliding_window = 4096 |
|
model.eval() |
|
|
|
|
|
if tokenizer.pad_token_id is None: |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
|
|
|
|
class Role: |
|
SYSTEM = "system" |
|
USER = "user" |
|
ASSISTANT = "assistant" |
|
|
|
|
|
default_system = "You are a helpful assistant." |
|
|
|
def clear_session() -> List: |
|
return "", [] |
|
|
|
def modify_system_session(system: str) -> Tuple[str, str, List]: |
|
if system is None or len(system) == 0: |
|
system = default_system |
|
return system, system, [] |
|
|
|
def history_to_messages(history: List, system: str) -> List[Dict]: |
|
messages = [{'role': Role.SYSTEM, 'content': system}] |
|
for h in history: |
|
messages.append({'role': Role.USER, 'content': h[0]}) |
|
messages.append({'role': Role.ASSISTANT, 'content': h[1]}) |
|
return messages |
|
|
|
def messages_to_history(messages: List[Dict]) -> Tuple[str, List]: |
|
assert messages[0]['role'] == Role.SYSTEM |
|
system = messages[0]['content'] |
|
history = [] |
|
for q, r in zip(messages[1::2], messages[2::2]): |
|
history.append([q['content'], r['content']]) |
|
return system, history |
|
|
|
@spaces.GPU(duration=120) |
|
def generate( |
|
query: Optional[str], |
|
history: Optional[List], |
|
system: str, |
|
max_new_tokens: int = 1024, |
|
temperature: float = 0.6, |
|
top_p: float = 0.9, |
|
top_k: int = 50, |
|
repetition_penalty: float = 1.2, |
|
) -> Iterator[str]: |
|
if query is None: |
|
query = '' |
|
if history is None: |
|
history = [] |
|
|
|
|
|
messages = history_to_messages(history, system) |
|
messages.append({'role': Role.USER, 'content': query}) |
|
|
|
|
|
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") |
|
|
|
|
|
attention_mask = torch.ones_like(input_ids) |
|
|
|
|
|
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: |
|
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] |
|
attention_mask = attention_mask[:, -MAX_INPUT_TOKEN_LENGTH:] |
|
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") |
|
|
|
input_ids = input_ids.to(model.device) |
|
attention_mask = attention_mask.to(model.device) |
|
|
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
top_p=top_p, |
|
top_k=top_k, |
|
temperature=temperature, |
|
num_beams=1, |
|
repetition_penalty=repetition_penalty, |
|
pad_token_id=tokenizer.pad_token_id, |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
|
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
yield "".join(outputs) |
|
|
|
|
|
demo = gr.ChatInterface( |
|
fn=generate, |
|
additional_inputs=[ |
|
gr.Textbox(label="System Message", value=default_system, lines=2), |
|
gr.Slider( |
|
label="Max new tokens", |
|
minimum=1, |
|
maximum=MAX_MAX_NEW_TOKENS, |
|
step=1, |
|
value=DEFAULT_MAX_NEW_TOKENS, |
|
), |
|
gr.Slider( |
|
label="Temperature", |
|
minimum=0.1, |
|
maximum=4.0, |
|
step=0.1, |
|
value=0.6, |
|
), |
|
gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
minimum=0.05, |
|
maximum=1.0, |
|
step=0.05, |
|
value=0.9, |
|
), |
|
gr.Slider( |
|
label="Top-k", |
|
minimum=1, |
|
maximum=1000, |
|
step=1, |
|
value=50, |
|
), |
|
gr.Slider( |
|
label="Repetition penalty", |
|
minimum=1.0, |
|
maximum=2.0, |
|
step=0.05, |
|
value=1.2, |
|
), |
|
], |
|
stop_btn=None, |
|
examples=[ |
|
["Write a Python function to reverses a string if it's length is a multiple of 4."], |
|
["What is the volume of a pyramid with a rectangular base?"], |
|
["Explain the difference between List comprehension and Lambda in Python."], |
|
["What happens when the sun goes down?"], |
|
], |
|
cache_examples=False, |
|
description=DESCRIPTION, |
|
css=css, |
|
fill_height=True, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch(share=True) |