|
import os |
|
import random |
|
import uuid |
|
import json |
|
import time |
|
import asyncio |
|
from threading import Thread |
|
|
|
import gradio as gr |
|
import spaces |
|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
import edge_tts |
|
|
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
TextIteratorStreamer, |
|
Qwen2VLForConditionalGeneration, |
|
AutoProcessor, |
|
) |
|
from transformers.image_utils import load_image |
|
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler |
|
|
|
|
|
|
|
|
|
|
|
DESCRIPTION = """ |
|
# QwQ Edge 💬 |
|
""" |
|
|
|
css = ''' |
|
h1 { |
|
text-align: center; |
|
display: block; |
|
} |
|
|
|
#duplicate-button { |
|
margin: auto; |
|
color: #fff; |
|
background: #1565c0; |
|
border-radius: 100vh; |
|
} |
|
''' |
|
|
|
MAX_MAX_NEW_TOKENS = 2048 |
|
DEFAULT_MAX_NEW_TOKENS = 1024 |
|
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
model_id = "prithivMLmods/FastThink-0.5B-Tiny" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
) |
|
model.eval() |
|
|
|
|
|
TTS_VOICES = [ |
|
"en-US-JennyNeural", |
|
"en-US-GuyNeural", |
|
] |
|
|
|
|
|
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" |
|
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) |
|
model_m = Qwen2VLForConditionalGeneration.from_pretrained( |
|
MODEL_ID, |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16 |
|
).to("cuda").eval() |
|
|
|
async def text_to_speech(text: str, voice: str, output_file="output.mp3"): |
|
"""Convert text to speech using Edge TTS and save as MP3""" |
|
communicate = edge_tts.Communicate(text, voice) |
|
await communicate.save(output_file) |
|
return output_file |
|
|
|
def clean_chat_history(chat_history): |
|
""" |
|
Filter out any chat entries whose "content" is not a string. |
|
This helps prevent errors when concatenating previous messages. |
|
""" |
|
cleaned = [] |
|
for msg in chat_history: |
|
if isinstance(msg, dict) and isinstance(msg.get("content"), str): |
|
cleaned.append(msg) |
|
return cleaned |
|
|
|
|
|
|
|
|
|
|
|
|
|
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") |
|
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) |
|
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" |
|
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" |
|
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) |
|
|
|
|
|
sd_pipe = StableDiffusionXLPipeline.from_pretrained( |
|
MODEL_ID_SD, |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, |
|
use_safetensors=True, |
|
add_watermarker=False, |
|
).to(device) |
|
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
|
|
|
|
if USE_TORCH_COMPILE: |
|
sd_pipe.compile() |
|
|
|
|
|
if ENABLE_CPU_OFFLOAD: |
|
sd_pipe.enable_model_cpu_offload() |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
def save_image(img: Image.Image) -> str: |
|
"""Save a PIL image with a unique filename and return the path.""" |
|
unique_name = str(uuid.uuid4()) + ".png" |
|
img.save(unique_name) |
|
return unique_name |
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
@spaces.GPU(duration=60, enable_queue=True) |
|
def generate_image_fn( |
|
prompt: str, |
|
negative_prompt: str = "", |
|
use_negative_prompt: bool = False, |
|
seed: int = 1, |
|
width: int = 1024, |
|
height: int = 1024, |
|
guidance_scale: float = 3, |
|
num_inference_steps: int = 25, |
|
randomize_seed: bool = False, |
|
use_resolution_binning: bool = True, |
|
num_images: int = 1, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
"""Generate images using the SDXL pipeline.""" |
|
seed = int(randomize_seed_fn(seed, randomize_seed)) |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
options = { |
|
"prompt": [prompt] * num_images, |
|
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None, |
|
"width": width, |
|
"height": height, |
|
"guidance_scale": guidance_scale, |
|
"num_inference_steps": num_inference_steps, |
|
"generator": generator, |
|
"output_type": "pil", |
|
} |
|
if use_resolution_binning: |
|
options["use_resolution_binning"] = True |
|
|
|
images = [] |
|
for i in range(0, num_images, BATCH_SIZE): |
|
batch_options = options.copy() |
|
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE] |
|
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None: |
|
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE] |
|
images.extend(sd_pipe(**batch_options).images) |
|
image_paths = [save_image(img) for img in images] |
|
return image_paths, seed |
|
|
|
|
|
|
|
|
|
|
|
@spaces.GPU |
|
def generate( |
|
input_dict: dict, |
|
chat_history: list[dict], |
|
max_new_tokens: int = 1024, |
|
temperature: float = 0.6, |
|
top_p: float = 0.9, |
|
top_k: int = 50, |
|
repetition_penalty: float = 1.2, |
|
): |
|
""" |
|
Generates chatbot responses with support for multimodal input, TTS, and now image generation. |
|
If the query starts with: |
|
- "@tts1" or "@tts2", it triggers text-to-speech. |
|
- "@image", it triggers image generation using the SDXL pipeline. |
|
""" |
|
text = input_dict["text"] |
|
files = input_dict.get("files", []) |
|
|
|
|
|
|
|
|
|
if text.strip().lower().startswith("@image"): |
|
|
|
prompt = text[len("@image"):].strip() |
|
yield "Generating image..." |
|
image_paths, used_seed = generate_image_fn( |
|
prompt=prompt, |
|
negative_prompt="", |
|
use_negative_prompt=False, |
|
seed=1, |
|
width=1024, |
|
height=1024, |
|
guidance_scale=3, |
|
num_inference_steps=25, |
|
randomize_seed=True, |
|
use_resolution_binning=True, |
|
num_images=1, |
|
) |
|
|
|
yield gr.Image(image_paths[0]) |
|
return |
|
|
|
|
|
|
|
|
|
tts_prefix = "@tts" |
|
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3)) |
|
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None) |
|
|
|
if is_tts and voice_index: |
|
voice = TTS_VOICES[voice_index - 1] |
|
text = text.replace(f"{tts_prefix}{voice_index}", "").strip() |
|
|
|
conversation = [{"role": "user", "content": text}] |
|
else: |
|
voice = None |
|
|
|
text = text.replace(tts_prefix, "").strip() |
|
conversation = clean_chat_history(chat_history) |
|
conversation.append({"role": "user", "content": text}) |
|
|
|
|
|
|
|
|
|
if files: |
|
if len(files) > 1: |
|
images = [load_image(image) for image in files] |
|
elif len(files) == 1: |
|
images = [load_image(files[0])] |
|
else: |
|
images = [] |
|
messages = [{ |
|
"role": "user", |
|
"content": [ |
|
*[{"type": "image", "image": image} for image in images], |
|
{"type": "text", "text": text}, |
|
] |
|
}] |
|
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda") |
|
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) |
|
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} |
|
thread = Thread(target=model_m.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
buffer = "" |
|
yield "Thinking..." |
|
for new_text in streamer: |
|
buffer += new_text |
|
buffer = buffer.replace("<|im_end|>", "") |
|
time.sleep(0.01) |
|
yield buffer |
|
else: |
|
|
|
|
|
|
|
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") |
|
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: |
|
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] |
|
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") |
|
input_ids = input_ids.to(model.device) |
|
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) |
|
generation_kwargs = { |
|
"input_ids": input_ids, |
|
"streamer": streamer, |
|
"max_new_tokens": max_new_tokens, |
|
"do_sample": True, |
|
"top_p": top_p, |
|
"top_k": top_k, |
|
"temperature": temperature, |
|
"num_beams": 1, |
|
"repetition_penalty": repetition_penalty, |
|
} |
|
t = Thread(target=model.generate, kwargs=generation_kwargs) |
|
t.start() |
|
|
|
outputs = [] |
|
for new_text in streamer: |
|
outputs.append(new_text) |
|
yield "".join(outputs) |
|
|
|
final_response = "".join(outputs) |
|
yield final_response |
|
|
|
|
|
if is_tts and voice: |
|
output_file = asyncio.run(text_to_speech(final_response, voice)) |
|
yield gr.Audio(output_file, autoplay=True) |
|
|
|
|
|
|
|
|
|
|
|
demo = gr.ChatInterface( |
|
fn=generate, |
|
additional_inputs=[ |
|
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), |
|
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), |
|
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), |
|
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), |
|
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), |
|
], |
|
examples=[ |
|
["@tts1 Who is Nikola Tesla, and why did he die?"], |
|
[{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}], |
|
[{"text": "summarize the letter", "files": ["examples/1.png"]}], |
|
["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"], |
|
["Write a Python function to check if a number is prime."], |
|
["@tts2 What causes rainbows to form?"], |
|
["@image A futuristic city skyline at dusk"], |
|
], |
|
cache_examples=False, |
|
type="messages", |
|
description=DESCRIPTION, |
|
css=css, |
|
fill_height=True, |
|
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), |
|
stop_btn="Stop Generation", |
|
multimodal=True, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch(share=True) |