# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional, Tuple, Union import collections.abc from itertools import repeat import torch from torch import nn import torch.nn.functional as F import torch.distributed as dist from diffusers.utils.torch_utils import maybe_allow_in_graph from diffusers.utils.import_utils import is_torch_npu_available, is_xformers_available from diffusers.models.attention import FeedForward from diffusers.models.attention_processor import Attention, AttentionProcessor from diffusers.models.normalization import ( AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle, FP32LayerNorm, LayerNorm, ) from .attention_processor import FluxAttnProcessor2_0, AttnProcessor2_0 @maybe_allow_in_graph class MultiCondBasicTransformerBlock(nn.Module): r""" A basic Transformer block. Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. num_embeds_ada_norm (: obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. attention_bias (: obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. only_cross_attention (`bool`, *optional*): Whether to use only cross-attention layers. In this case two cross attention layers are used. double_self_attention (`bool`, *optional*): Whether to use two self-attention layers. In this case no cross attention layers are used. upcast_attention (`bool`, *optional*): Whether to upcast the attention computation to float32. This is useful for mixed precision training. norm_elementwise_affine (`bool`, *optional*, defaults to `True`): Whether to use learnable elementwise affine parameters for normalization. norm_type (`str`, *optional*, defaults to `"layer_norm"`): The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. final_dropout (`bool` *optional*, defaults to False): Whether to apply a final dropout after the last feed-forward layer. attention_type (`str`, *optional*, defaults to `"default"`): The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. positional_embeddings (`str`, *optional*, defaults to `None`): The type of positional embeddings to apply to. num_positional_embeddings (`int`, *optional*, defaults to `None`): The maximum number of positional embeddings to apply. """ def __init__( self, dim: int, num_attention_heads: int, use_self_attention: bool = True, use_cross_attention: bool = False, self_attention_norm_type: Optional[ str ] = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen' cross_attention_dim: Optional[int] = None, cross_attention_norm_type: Optional[str] = None, # parallel second cross attention use_cross_attention_2: bool = False, cross_attention_2_dim: Optional[int] = None, cross_attention_2_norm_type: Optional[str] = None, # parallel third cross attention use_cross_attention_3: bool = False, cross_attention_3_dim: Optional[int] = None, cross_attention_3_norm_type: Optional[str] = None, dropout=0.0, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, attention_bias: bool = False, only_cross_attention: bool = False, double_self_attention: bool = False, upcast_attention: bool = False, norm_elementwise_affine: bool = True, norm_eps: float = 1e-5, final_dropout: bool = False, attention_type: str = "default", positional_embeddings: Optional[str] = None, num_positional_embeddings: Optional[int] = None, ada_norm_continous_conditioning_embedding_dim: Optional[int] = None, ada_norm_bias: Optional[int] = None, ff_inner_dim: Optional[int] = None, ff_bias: bool = True, attention_out_bias: bool = True, ): super().__init__() self.dim = dim self.num_attention_heads = num_attention_heads self.use_self_attention = use_self_attention self.use_cross_attention = use_cross_attention self.self_attention_norm_type = self_attention_norm_type self.cross_attention_dim = cross_attention_dim self.cross_attention_norm_type = cross_attention_norm_type self.use_cross_attention_2 = use_cross_attention_2 self.cross_attention_2_dim = cross_attention_2_dim self.cross_attention_2_norm_type = cross_attention_2_norm_type self.use_cross_attention_3 = use_cross_attention_3 self.cross_attention_3_dim = cross_attention_3_dim self.cross_attention_3_norm_type = cross_attention_3_norm_type self.dropout = dropout self.cross_attention_dim = cross_attention_dim self.activation_fn = activation_fn self.attention_bias = attention_bias self.double_self_attention = double_self_attention self.norm_elementwise_affine = norm_elementwise_affine self.positional_embeddings = positional_embeddings self.num_positional_embeddings = num_positional_embeddings self.only_cross_attention = only_cross_attention # We keep these boolean flags for backward-compatibility. self.use_ada_layer_norm_zero = ( num_embeds_ada_norm is not None ) and self_attention_norm_type == "ada_norm_zero" self.use_ada_layer_norm = ( num_embeds_ada_norm is not None ) and self_attention_norm_type == "ada_norm" self.use_ada_layer_norm_single = self_attention_norm_type == "ada_norm_single" self.use_layer_norm = self_attention_norm_type == "layer_norm" self.use_ada_layer_norm_continuous = ( self_attention_norm_type == "ada_norm_continuous" ) if ( self_attention_norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None ): raise ValueError( f"`self_attention_norm_type` is set to {self_attention_norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" f" define `num_embeds_ada_norm` if setting `self_attention_norm_type` to {self_attention_norm_type}." ) self.self_attention_norm_type = self_attention_norm_type self.num_embeds_ada_norm = num_embeds_ada_norm if positional_embeddings and (num_positional_embeddings is None): raise ValueError( "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." ) if positional_embeddings == "sinusoidal": self.pos_embed = SinusoidalPositionalEmbedding( dim, max_seq_length=num_positional_embeddings ) else: self.pos_embed = None # Define 3 blocks. Each block has its own normalization layer. if use_self_attention: # 1. Self-Attn if self_attention_norm_type == "ada_norm": self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) elif self_attention_norm_type == "ada_norm_zero": self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) elif self_attention_norm_type == "ada_norm_continuous": self.norm1 = AdaLayerNormContinuous( dim, ada_norm_continous_conditioning_embedding_dim, norm_elementwise_affine, norm_eps, ada_norm_bias, "rms_norm", ) elif ( self_attention_norm_type == "fp32_layer_norm" or self_attention_norm_type is None ): self.norm1 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) else: self.norm1 = nn.RMSNorm( dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps ) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=dim // num_attention_heads, dropout=dropout, bias=attention_bias, cross_attention_dim=( cross_attention_dim if only_cross_attention else None ), upcast_attention=upcast_attention, out_bias=attention_out_bias, processor=AttnProcessor2_0(), ) # 2. Cross-Attn if use_cross_attention or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. if cross_attention_norm_type == "ada_norm": self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) elif cross_attention_norm_type == "ada_norm_continuous": self.norm2 = AdaLayerNormContinuous( dim, ada_norm_continous_conditioning_embedding_dim, norm_elementwise_affine, norm_eps, ada_norm_bias, "rms_norm", ) elif ( cross_attention_norm_type == "fp32_layer_norm" or cross_attention_norm_type is None ): self.norm2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) else: self.norm2 = nn.RMSNorm( dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps ) self.attn2 = Attention( query_dim=dim, cross_attention_dim=( cross_attention_dim if not double_self_attention else None ), heads=num_attention_heads, dim_head=dim // num_attention_heads, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, out_bias=attention_out_bias, processor=AttnProcessor2_0(), ) # is self-attn if encoder_hidden_states is none else: self.norm2 = None self.attn2 = None # 2'. Parallel Second Cross-Attn if use_cross_attention_2: assert cross_attention_2_dim is not None if cross_attention_2_norm_type == "ada_norm": self.norm2_2 = AdaLayerNorm(dim, num_embeds_ada_norm) elif cross_attention_2_norm_type == "ada_norm_continuous": self.norm2_2 = AdaLayerNormContinuous( dim, ada_norm_continous_conditioning_embedding_dim, norm_elementwise_affine, norm_eps, ada_norm_bias, "rms_norm", ) elif ( cross_attention_2_norm_type == "fp32_layer_norm" or cross_attention_2_norm_type is None ): self.norm2_2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) else: self.norm2_2 = nn.RMSNorm( dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps ) self.attn2_2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_2_dim, heads=num_attention_heads, dim_head=dim // num_attention_heads, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, out_bias=attention_out_bias, processor=AttnProcessor2_0(), ) # self.attn2_2 = Attention( # query_dim=dim, # cross_attention_dim=cross_attention_2_dim, # dim_head=dim // num_attention_heads, # heads=num_attention_heads, # qk_norm="rms_norm" if qk_norm else None, # cross_attention_norm=cross_attention_2_norm_type, # eps=1e-6, # bias=qkv_bias, # processor=AttnProcessor2_0(), # ) else: self.norm2_2 = None self.attn2_2 = None # 2'. Parallel Third Cross-Attn if use_cross_attention_3: assert cross_attention_3_dim is not None if cross_attention_3_norm_type == "ada_norm": self.norm2_3 = AdaLayerNorm(dim, num_embeds_ada_norm) elif cross_attention_3_norm_type == "ada_norm_continuous": self.norm2_3 = AdaLayerNormContinuous( dim, ada_norm_continous_conditioning_embedding_dim, norm_elementwise_affine, norm_eps, ada_norm_bias, "rms_norm", ) elif ( cross_attention_3_norm_type == "fp32_layer_norm" or cross_attention_3_norm_type is None ): self.norm2_3 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) else: self.norm2_3 = nn.RMSNorm( dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps ) self.attn2_3 = Attention( query_dim=dim, cross_attention_dim=cross_attention_3_dim, heads=num_attention_heads, dim_head=dim // num_attention_heads, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, out_bias=attention_out_bias, processor=AttnProcessor2_0(), ) else: self.norm2_3 = None self.attn2_3 = None # 3. Feed-forward if self_attention_norm_type == "ada_norm_continuous": self.norm3 = AdaLayerNormContinuous( dim, ada_norm_continous_conditioning_embedding_dim, norm_elementwise_affine, norm_eps, ada_norm_bias, "layer_norm", ) elif self_attention_norm_type in ["ada_norm_zero", "ada_norm", "layer_norm"]: self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) elif self_attention_norm_type == "layer_norm_i2vgen": self.norm3 = None self.ff = FeedForward( dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout, inner_dim=ff_inner_dim, bias=ff_bias, ) # 4. Fuser if attention_type == "gated" or attention_type == "gated-text-image": self.fuser = GatedSelfAttentionDense( dim, cross_attention_dim, num_attention_heads, attention_head_dim ) # 5. Scale-shift for PixArt-Alpha. if self_attention_norm_type == "ada_norm_single": self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): # Sets chunk feed-forward self._chunk_size = chunk_size self._chunk_dim = dim def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_hidden_states_2: Optional[torch.Tensor] = None, encoder_hidden_states_3: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, encoder_attention_mask_2: Optional[torch.Tensor] = None, encoder_attention_mask_3: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, class_labels: Optional[torch.LongTensor] = None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored." ) # Notice that normalization is always applied before the real computation in the following blocks. # 0. Self-Attention batch_size = hidden_states.shape[0] if self.self_attention_norm_type == "ada_norm": norm_hidden_states = self.norm1(hidden_states, timestep) elif self.self_attention_norm_type == "ada_norm_zero": norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype ) elif self.self_attention_norm_type in ["layer_norm", "layer_norm_i2vgen"]: norm_hidden_states = self.norm1(hidden_states) elif self.self_attention_norm_type == "ada_norm_continuous": norm_hidden_states = self.norm1( hidden_states, added_cond_kwargs["pooled_text_emb"] ) elif self.self_attention_norm_type == "ada_norm_single": shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) ).chunk(6, dim=1) norm_hidden_states = self.norm1(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa else: raise ValueError("Incorrect norm used") if self.pos_embed is not None: norm_hidden_states = self.pos_embed(norm_hidden_states) # 1. Prepare GLIGEN inputs cross_attention_kwargs = ( cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} ) gligen_kwargs = cross_attention_kwargs.pop("gligen", None) attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=( encoder_hidden_states if self.only_cross_attention else None ), attention_mask=attention_mask, **cross_attention_kwargs, ) if self.self_attention_norm_type == "ada_norm_zero": attn_output = gate_msa.unsqueeze(1) * attn_output elif self.self_attention_norm_type == "ada_norm_single": attn_output = gate_msa * attn_output hidden_states = attn_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) # 1.2 GLIGEN Control if gligen_kwargs is not None: hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) # 3. Cross-Attention if self.attn2 is not None: if self.cross_attention_norm_type == "ada_norm": norm_hidden_states = self.norm2(hidden_states, timestep) elif self.cross_attention_norm_type in [ "ada_norm_zero", "layer_norm", "layer_norm_i2vgen", ]: norm_hidden_states = self.norm2(hidden_states) elif self.cross_attention_norm_type == "ada_norm_single": # For PixArt norm2 isn't applied here: # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 norm_hidden_states = hidden_states elif self.cross_attention_norm_type == "ada_norm_continuous": norm_hidden_states = self.norm2( hidden_states, added_cond_kwargs["pooled_text_emb"] ) else: raise ValueError("Incorrect norm") if ( self.pos_embed is not None and self.cross_attention_norm_type != "ada_norm_single" ): norm_hidden_states = self.pos_embed(norm_hidden_states) attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states # 3.1 Parallel Second Cross-Attention if self.attn2_2 is not None: if self.cross_attention_2_norm_type == "ada_norm": norm_hidden_states = self.norm2_2(hidden_states, timestep) elif self.cross_attention_2_norm_type in [ "ada_norm_zero", "layer_norm", "layer_norm_i2vgen", ]: norm_hidden_states = self.norm2_2(hidden_states) elif self.cross_attention_2_norm_type == "ada_norm_single": # For PixArt norm2_2 isn't applied here: # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 norm_hidden_states = hidden_states elif self.cross_attention_2_norm_type == "ada_norm_continuous": norm_hidden_states = self.norm2_2( hidden_states, added_cond_kwargs["pooled_text_emb"] ) else: raise ValueError("Incorrect norm") if ( self.pos_embed is not None and self.cross_attention_2_norm_type != "ada_norm_single" ): norm_hidden_states = self.pos_embed(norm_hidden_states) attn_output_2 = self.attn2_2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states_2, attention_mask=encoder_attention_mask_2, **cross_attention_kwargs, ) hidden_states = attn_output_2 + hidden_states # 3.2 Parallel Third Cross-Attention if self.attn2_3 is not None: if self.cross_attention_3_norm_type == "ada_norm": norm_hidden_states = self.norm2_3(hidden_states, timestep) elif self.cross_attention_3_norm_type in [ "ada_norm_zero", "layer_norm", "layer_norm_i2vgen", ]: norm_hidden_states = self.norm2_3(hidden_states) elif self.cross_attention_3_norm_type == "ada_norm_single": # For PixArt norm2_3 isn't applied here: # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 norm_hidden_states = hidden_states elif self.cross_attention_3_norm_type == "ada_norm_continuous": norm_hidden_states = self.norm2_3( hidden_states, added_cond_kwargs["pooled_text_emb"] ) else: raise ValueError("Incorrect norm") if ( self.pos_embed is not None and self.cross_attention_3_norm_type != "ada_norm_single" ): norm_hidden_states = self.pos_embed(norm_hidden_states) attn_output_3 = self.attn2_3( norm_hidden_states, encoder_hidden_states=encoder_hidden_states_3, attention_mask=encoder_attention_mask_3, **cross_attention_kwargs, ) hidden_states = attn_output_3 + hidden_states # 4. Feed-forward # i2vgen doesn't have this norm 🤷‍♂️ if self.self_attention_norm_type == "ada_norm_continuous": norm_hidden_states = self.norm3( hidden_states, added_cond_kwargs["pooled_text_emb"] ) elif not self.self_attention_norm_type == "ada_norm_single": norm_hidden_states = self.norm3(hidden_states) if self.self_attention_norm_type == "ada_norm_zero": norm_hidden_states = ( norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] ) if self.self_attention_norm_type == "ada_norm_single": norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory ff_output = _chunked_feed_forward( self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size ) else: ff_output = self.ff(norm_hidden_states) if self.self_attention_norm_type == "ada_norm_zero": ff_output = gate_mlp.unsqueeze(1) * ff_output elif self.self_attention_norm_type == "ada_norm_single": ff_output = gate_mlp * ff_output hidden_states = ff_output + hidden_states return hidden_states @maybe_allow_in_graph class FluxSingleTransformerBlock(nn.Module): def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, mlp_ratio: float = 4.0, ): super().__init__() self.mlp_hidden_dim = int(dim * mlp_ratio) self.norm = AdaLayerNormZeroSingle(dim) self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim) self.act_mlp = nn.GELU(approximate="tanh") self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim) if is_torch_npu_available(): deprecation_message = ( "Defaulting to FluxAttnProcessor2_0_NPU for NPU devices will be removed. Attention processors " "should be set explicitly using the `set_attn_processor` method." ) deprecate("npu_processor", "0.34.0", deprecation_message) processor = FluxAttnProcessor2_0_NPU() else: processor = FluxAttnProcessor2_0() self.attn = Attention( query_dim=dim, cross_attention_dim=None, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, bias=True, processor=processor, qk_norm="rms_norm", eps=1e-6, pre_only=True, ) def forward( self, hidden_states: torch.Tensor, temb: torch.Tensor, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, ) -> torch.Tensor: residual = hidden_states norm_hidden_states, gate = self.norm(hidden_states, emb=temb) mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) joint_attention_kwargs = joint_attention_kwargs or {} attn_output = self.attn( hidden_states=norm_hidden_states, image_rotary_emb=image_rotary_emb, **joint_attention_kwargs, ) hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) gate = gate.unsqueeze(1) hidden_states = gate * self.proj_out(hidden_states) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16: hidden_states = hidden_states.clip(-65504, 65504) return hidden_states @maybe_allow_in_graph class FluxTransformerBlock(nn.Module): def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6, ): super().__init__() self.norm1 = AdaLayerNormZero(dim) self.norm1_context = AdaLayerNormZero(dim) self.attn = Attention( query_dim=dim, cross_attention_dim=None, added_kv_proj_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, context_pre_only=False, bias=True, processor=FluxAttnProcessor2_0(), qk_norm=qk_norm, eps=eps, ) mlp_ratio = 4.0 self.mlp_hidden_dim = int(dim * mlp_ratio) self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff_context = FeedForward( dim=dim, dim_out=dim, activation_fn="gelu-approximate" ) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( hidden_states, emb=temb ) norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = ( self.norm1_context(encoder_hidden_states, emb=temb) ) joint_attention_kwargs = joint_attention_kwargs or {} # Attention. attention_outputs = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, image_rotary_emb=image_rotary_emb, **joint_attention_kwargs, ) if len(attention_outputs) == 2: attn_output, context_attn_output = attention_outputs elif len(attention_outputs) == 3: attn_output, context_attn_output, ip_attn_output = attention_outputs # Process attention outputs for the `hidden_states`. attn_output = gate_msa.unsqueeze(1) * attn_output hidden_states = hidden_states + attn_output norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = ( norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] ) ff_output = self.ff(norm_hidden_states) ff_output = gate_mlp.unsqueeze(1) * ff_output hidden_states = hidden_states + ff_output if len(attention_outputs) == 3: hidden_states = hidden_states + ip_attn_output # Process attention outputs for the `encoder_hidden_states`. context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output encoder_hidden_states = encoder_hidden_states + context_attn_output norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) norm_encoder_hidden_states = ( norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] ) context_ff_output = self.ff_context(norm_encoder_hidden_states) encoder_hidden_states = ( encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output ) if encoder_hidden_states.dtype == torch.float16: encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) return encoder_hidden_states, hidden_states