|
from dataclasses import dataclass, field |
|
|
|
import numpy as np |
|
import json |
|
import copy |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from skimage import measure |
|
from einops import repeat |
|
from tqdm import tqdm |
|
from PIL import Image |
|
|
|
from diffusers import ( |
|
DDPMScheduler, |
|
DDIMScheduler, |
|
UniPCMultistepScheduler, |
|
KarrasVeScheduler, |
|
DPMSolverMultistepScheduler, |
|
) |
|
from diffusers.training_utils import ( |
|
compute_density_for_timestep_sampling, |
|
compute_loss_weighting_for_sd3, |
|
free_memory, |
|
) |
|
import step1x3d_geometry |
|
from step1x3d_geometry.systems.base import BaseSystem |
|
from step1x3d_geometry.utils.misc import get_rank |
|
from step1x3d_geometry.utils.typing import * |
|
from step1x3d_geometry.systems.utils import read_image, preprocess_image, flow_sample |
|
|
|
|
|
def get_sigmas(noise_scheduler, timesteps, n_dim=4, dtype=torch.float32): |
|
sigmas = noise_scheduler.sigmas.to(device=timesteps.device, dtype=dtype) |
|
schedule_timesteps = noise_scheduler.timesteps.to(timesteps.device) |
|
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] |
|
|
|
sigma = sigmas[step_indices].flatten() |
|
while len(sigma.shape) < n_dim: |
|
sigma = sigma.unsqueeze(-1) |
|
return sigma |
|
|
|
|
|
@step1x3d_geometry.register("rectified-flow-system") |
|
class RectifiedFlowSystem(BaseSystem): |
|
@dataclass |
|
class Config(BaseSystem.Config): |
|
skip_validation: bool = True |
|
val_samples_json: str = "" |
|
bounds: float = 1.05 |
|
mc_level: float = 0.0 |
|
octree_resolution: int = 256 |
|
|
|
|
|
guidance_scale: float = 7.5 |
|
num_inference_steps: int = 30 |
|
eta: float = 0.0 |
|
snr_gamma: float = 5.0 |
|
|
|
|
|
weighting_scheme: str = "logit_normal" |
|
logit_mean: float = 0 |
|
logit_std: float = 1.0 |
|
mode_scale: float = 1.29 |
|
precondition_outputs: bool = True |
|
precondition_t: int = 1000 |
|
|
|
|
|
shape_model_type: str = None |
|
shape_model: dict = field(default_factory=dict) |
|
|
|
|
|
visual_condition_type: Optional[str] = None |
|
visual_condition: dict = field(default_factory=dict) |
|
caption_condition_type: Optional[str] = None |
|
caption_condition: dict = field(default_factory=dict) |
|
label_condition_type: Optional[str] = None |
|
label_condition: dict = field(default_factory=dict) |
|
|
|
|
|
denoiser_model_type: str = None |
|
denoiser_model: dict = field(default_factory=dict) |
|
|
|
|
|
noise_scheduler_type: str = None |
|
noise_scheduler: dict = field(default_factory=dict) |
|
|
|
|
|
denoise_scheduler_type: str = None |
|
denoise_scheduler: dict = field(default_factory=dict) |
|
|
|
|
|
use_lora: bool = False |
|
lora_layers: Optional[str] = None |
|
rank: int = 128 |
|
alpha: int = 128 |
|
|
|
cfg: Config |
|
|
|
def configure(self): |
|
super().configure() |
|
|
|
self.shape_model = step1x3d_geometry.find(self.cfg.shape_model_type)( |
|
self.cfg.shape_model |
|
) |
|
self.shape_model.eval() |
|
self.shape_model.requires_grad_(False) |
|
|
|
if self.cfg.visual_condition_type is not None: |
|
self.visual_condition = step1x3d_geometry.find( |
|
self.cfg.visual_condition_type |
|
)(self.cfg.visual_condition) |
|
self.visual_condition.requires_grad_(False) |
|
|
|
if self.cfg.caption_condition_type is not None: |
|
self.caption_condition = step1x3d_geometry.find( |
|
self.cfg.caption_condition_type |
|
)(self.cfg.caption_condition) |
|
self.caption_condition.requires_grad_(False) |
|
|
|
if self.cfg.label_condition_type is not None: |
|
self.label_condition = step1x3d_geometry.find( |
|
self.cfg.label_condition_type |
|
)(self.cfg.label_condition) |
|
|
|
self.denoiser_model = step1x3d_geometry.find(self.cfg.denoiser_model_type)( |
|
self.cfg.denoiser_model |
|
) |
|
if self.cfg.use_lora: |
|
self.denoiser_model.requires_grad_(False) |
|
|
|
self.noise_scheduler = step1x3d_geometry.find(self.cfg.noise_scheduler_type)( |
|
**self.cfg.noise_scheduler |
|
) |
|
self.noise_scheduler_copy = copy.deepcopy(self.noise_scheduler) |
|
|
|
self.denoise_scheduler = step1x3d_geometry.find( |
|
self.cfg.denoise_scheduler_type |
|
)(**self.cfg.denoise_scheduler) |
|
|
|
if self.cfg.use_lora: |
|
from peft import LoraConfig, set_peft_model_state_dict |
|
|
|
if self.cfg.lora_layers is not None: |
|
self.target_modules = [ |
|
layer.strip() for layer in self.cfg.lora_layers.split(",") |
|
] |
|
else: |
|
self.target_modules = [ |
|
"attn.to_k", |
|
"attn.to_q", |
|
"attn.to_v", |
|
"attn.to_out.0", |
|
"attn.add_k_proj", |
|
"attn.add_q_proj", |
|
"attn.add_v_proj", |
|
"attn.to_add_out", |
|
"ff.net.0.proj", |
|
"ff.net.2", |
|
"ff_context.net.0.proj", |
|
"ff_context.net.2", |
|
] |
|
self.transformer_lora_config = LoraConfig( |
|
r=self.cfg.rank, |
|
lora_alpha=self.cfg.alpha, |
|
init_lora_weights="gaussian", |
|
target_modules=self.target_modules, |
|
) |
|
self.denoiser_model.dit_model.add_adapter(self.transformer_lora_config) |
|
|
|
def forward(self, batch: Dict[str, Any], skip_noise=False) -> Dict[str, Any]: |
|
|
|
if "sharp_surface" in batch.keys(): |
|
sharp_surface = batch["sharp_surface"][ |
|
..., : 3 + self.cfg.shape_model.point_feats |
|
] |
|
else: |
|
sharp_surface = None |
|
shape_embeds, latents, _ = self.shape_model.encode( |
|
batch["surface"][..., : 3 + self.cfg.shape_model.point_feats], |
|
sample_posterior=True, |
|
sharp_surface=sharp_surface, |
|
) |
|
|
|
|
|
visual_cond = None |
|
if self.cfg.visual_condition_type is not None: |
|
assert "image" in batch.keys(), "image is required for label encoder" |
|
if "image" in batch and batch["image"].dim() == 5: |
|
if self.training: |
|
bs, n_images = batch["image"].shape[:2] |
|
batch["image"] = batch["image"].view( |
|
bs * n_images, *batch["image"].shape[-3:] |
|
) |
|
else: |
|
batch["image"] = batch["image"][:, 0, ...] |
|
n_images = 1 |
|
bs = batch["image"].shape[0] |
|
visual_cond = self.visual_condition(batch).to(latents) |
|
latents = latents.unsqueeze(1).repeat(1, n_images, 1, 1) |
|
latents = latents.view(bs * n_images, *latents.shape[-2:]) |
|
else: |
|
visual_cond = self.visual_condition(batch).to(latents) |
|
bs = visual_cond.shape[0] |
|
n_images = 1 |
|
|
|
|
|
caption_cond = None |
|
if self.cfg.caption_condition_type is not None: |
|
assert "caption" in batch.keys(), "caption is required for caption encoder" |
|
assert bs == len( |
|
batch["caption"] |
|
), "Batch size must be the same as the caption length." |
|
caption_cond = ( |
|
self.caption_condition(batch) |
|
.repeat_interleave(n_images, dim=0) |
|
.to(latents) |
|
) |
|
|
|
|
|
label_cond = None |
|
if self.cfg.label_condition_type is not None: |
|
assert "label" in batch.keys(), "label is required for label encoder" |
|
assert bs == len( |
|
batch["label"] |
|
), "Batch size must be the same as the label length." |
|
label_cond = ( |
|
self.label_condition(batch) |
|
.repeat_interleave(n_images, dim=0) |
|
.to(latents) |
|
) |
|
|
|
|
|
noise = torch.randn_like(latents).to( |
|
latents |
|
) |
|
|
|
|
|
u = compute_density_for_timestep_sampling( |
|
weighting_scheme=self.cfg.weighting_scheme, |
|
batch_size=bs * n_images, |
|
logit_mean=self.cfg.logit_mean, |
|
logit_std=self.cfg.logit_std, |
|
mode_scale=self.cfg.mode_scale, |
|
) |
|
indices = (u * self.cfg.noise_scheduler.num_train_timesteps).long() |
|
timesteps = self.noise_scheduler_copy.timesteps[indices].to( |
|
device=latents.device |
|
) |
|
|
|
|
|
sigmas = get_sigmas( |
|
self.noise_scheduler_copy, timesteps, n_dim=3, dtype=latents.dtype |
|
) |
|
noisy_z = (1.0 - sigmas) * latents + sigmas * noise |
|
|
|
|
|
output = self.denoiser_model( |
|
noisy_z, timesteps.long(), visual_cond, caption_cond, label_cond |
|
).sample |
|
|
|
|
|
if self.cfg.precondition_outputs: |
|
output = output * (-sigmas) + noisy_z |
|
|
|
|
|
weighting = compute_loss_weighting_for_sd3( |
|
weighting_scheme=self.cfg.weighting_scheme, sigmas=sigmas |
|
) |
|
|
|
if self.cfg.precondition_outputs: |
|
target = latents |
|
else: |
|
target = noise - latents |
|
|
|
|
|
loss = torch.mean( |
|
(weighting.float() * (output.float() - target.float()) ** 2).reshape( |
|
target.shape[0], -1 |
|
), |
|
1, |
|
) |
|
loss = loss.mean() |
|
|
|
return { |
|
"loss_diffusion": loss, |
|
"latents": latents, |
|
"x_t": noisy_z, |
|
"noise": noise, |
|
"noise_pred": output, |
|
"timesteps": timesteps, |
|
} |
|
|
|
def training_step(self, batch, batch_idx): |
|
out = self(batch) |
|
|
|
loss = 0.0 |
|
for name, value in out.items(): |
|
if name.startswith("loss_"): |
|
self.log(f"train/{name}", value) |
|
loss += value * self.C(self.cfg.loss[name.replace("loss_", "lambda_")]) |
|
if name.startswith("log_"): |
|
self.log(f"log/{name.replace('log_', '')}", value.mean()) |
|
|
|
for name, value in self.cfg.loss.items(): |
|
if name.startswith("lambda_"): |
|
self.log(f"train_params/{name}", self.C(value)) |
|
|
|
return {"loss": loss} |
|
|
|
@torch.no_grad() |
|
def validation_step(self, batch, batch_idx): |
|
if self.cfg.skip_validation: |
|
return {} |
|
self.eval() |
|
|
|
if get_rank() == 0: |
|
sample_inputs = json.loads( |
|
open(self.cfg.val_samples_json).read() |
|
) |
|
sample_inputs_ = copy.deepcopy(sample_inputs) |
|
sample_outputs = self.sample(sample_inputs) |
|
for i, latents in enumerate(sample_outputs["latents"]): |
|
meshes = self.shape_model.extract_geometry( |
|
latents, |
|
bounds=self.cfg.bounds, |
|
mc_level=self.cfg.mc_level, |
|
octree_resolution=self.cfg.octree_resolution, |
|
enable_pbar=False, |
|
) |
|
|
|
for j in range(len(meshes)): |
|
name = "" |
|
if "image" in sample_inputs_: |
|
name += ( |
|
sample_inputs_["image"][j] |
|
.split("/")[-1] |
|
.replace(".png", "") |
|
) |
|
|
|
elif "mvimages" in sample_inputs_: |
|
name += ( |
|
sample_inputs_["mvimages"][j][0] |
|
.split("/")[-2] |
|
.replace(".png", "") |
|
) |
|
|
|
if "caption" in sample_inputs_: |
|
name += "_" + sample_inputs_["caption"][j].replace( |
|
" ", "_" |
|
).replace(".", "") |
|
|
|
if "label" in sample_inputs_: |
|
name += ( |
|
"_" |
|
+ sample_inputs_["label"][j]["symmetry"] |
|
+ sample_inputs_["label"][j]["edge_type"] |
|
) |
|
|
|
if ( |
|
meshes[j].verts is not None |
|
and meshes[j].verts.shape[0] > 0 |
|
and meshes[j].faces is not None |
|
and meshes[j].faces.shape[0] > 0 |
|
): |
|
self.save_mesh( |
|
f"it{self.true_global_step}/{name}_{i}.obj", |
|
meshes[j].verts, |
|
meshes[j].faces, |
|
) |
|
torch.cuda.empty_cache() |
|
|
|
out = self(batch) |
|
if self.global_step == 0: |
|
latents = self.shape_model.decode(out["latents"]) |
|
meshes = self.shape_model.extract_geometry( |
|
latents, |
|
bounds=self.cfg.bounds, |
|
mc_level=self.cfg.mc_level, |
|
octree_resolution=self.cfg.octree_resolution, |
|
enable_pbar=False, |
|
) |
|
|
|
for i, mesh in enumerate(meshes): |
|
self.save_mesh( |
|
f"it{self.true_global_step}/{batch['uid'][i]}.obj", |
|
mesh.verts, |
|
mesh.faces, |
|
) |
|
|
|
return {"val/loss": out["loss_diffusion"]} |
|
|
|
@torch.no_grad() |
|
def sample( |
|
self, |
|
sample_inputs: Dict[str, Union[torch.FloatTensor, List[str]]], |
|
sample_times: int = 1, |
|
steps: Optional[int] = None, |
|
guidance_scale: Optional[float] = None, |
|
eta: float = 0.0, |
|
seed: Optional[int] = None, |
|
**kwargs, |
|
): |
|
|
|
if steps is None: |
|
steps = self.cfg.num_inference_steps |
|
if guidance_scale is None: |
|
guidance_scale = self.cfg.guidance_scale |
|
do_classifier_free_guidance = guidance_scale != 1.0 |
|
|
|
|
|
visal_cond = None |
|
if "image" in sample_inputs: |
|
sample_inputs["image"] = [ |
|
Image.open(img) if type(img) == str else img |
|
for img in sample_inputs["image"] |
|
] |
|
sample_inputs["image"] = preprocess_image(sample_inputs["image"], **kwargs) |
|
cond = self.visual_condition.encode_image(sample_inputs["image"]) |
|
if do_classifier_free_guidance: |
|
un_cond = self.visual_condition.empty_image_embeds.repeat( |
|
len(sample_inputs["image"]), 1, 1 |
|
).to(cond) |
|
visal_cond = torch.cat([un_cond, cond], dim=0) |
|
caption_cond = None |
|
if "caption" in sample_inputs: |
|
cond = self.label_condition.encode_label(sample_inputs["caption"]) |
|
if do_classifier_free_guidance: |
|
un_cond = self.caption_condition.empty_caption_embeds.repeat( |
|
len(sample_inputs["caption"]), 1, 1 |
|
).to(cond) |
|
caption_cond = torch.cat([un_cond, cond], dim=0) |
|
label_cond = None |
|
if "label" in sample_inputs: |
|
cond = self.label_condition.encode_label(sample_inputs["label"]) |
|
if do_classifier_free_guidance: |
|
un_cond = self.label_condition.empty_label_embeds.repeat( |
|
len(sample_inputs["label"]), 1, 1 |
|
).to(cond) |
|
label_cond = torch.cat([un_cond, cond], dim=0) |
|
|
|
latents_list = [] |
|
if seed != None: |
|
generator = torch.Generator(device="cuda").manual_seed(seed) |
|
else: |
|
generator = None |
|
|
|
for _ in range(sample_times): |
|
sample_loop = flow_sample( |
|
self.denoise_scheduler, |
|
self.denoiser_model.eval(), |
|
shape=self.shape_model.latent_shape, |
|
visual_cond=visal_cond, |
|
caption_cond=caption_cond, |
|
label_cond=label_cond, |
|
steps=steps, |
|
guidance_scale=guidance_scale, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
device=self.device, |
|
eta=eta, |
|
disable_prog=False, |
|
generator=generator, |
|
) |
|
for sample, t in sample_loop: |
|
latents = sample |
|
latents_list.append(self.shape_model.decode(latents)) |
|
|
|
return {"latents": latents_list, "inputs": sample_inputs} |
|
|
|
def on_validation_epoch_end(self): |
|
pass |
|
|
|
def test_step(self, batch, batch_idx): |
|
return |
|
|