|
|
|
from dataclasses import dataclass |
|
|
|
import re |
|
import math |
|
import torch |
|
from torch import nn |
|
from typing import Callable, List, Optional, Union, Dict, Any |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import logging |
|
from diffusers.models.attention_processor import ( |
|
Attention, |
|
AttentionProcessor, |
|
AttnProcessor, |
|
) |
|
from diffusers.models.embeddings import PatchEmbed, PixArtAlphaTextProjection |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.normalization import AdaLayerNormSingle |
|
|
|
from ..attention_processor import FusedAttnProcessor2_0, AttnProcessor2_0 |
|
from ..attention import MultiCondBasicTransformerBlock |
|
|
|
import step1x3d_geometry |
|
from step1x3d_geometry.utils.base import BaseModule |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class Transformer1DModelOutput: |
|
sample: torch.FloatTensor |
|
|
|
|
|
class PixArtTransformer1DModel(ModelMixin, ConfigMixin): |
|
r""" |
|
A 1D Transformer model as introduced in PixArt family of models (https://arxiv.org/abs/2310.00426, |
|
https://arxiv.org/abs/2403.04692). |
|
|
|
Parameters: |
|
num_attention_heads (`int`, *optional*, defaults to 16): |
|
The number of heads to use for multi-head attention. |
|
width (`int`, *optional*, defaults to 2048): |
|
Maximum sequence length in latent space (equivalent to max_seq_length in Transformers). |
|
Determines the first dimension size of positional embedding matrices[1](@ref). |
|
in_channels (`int`, *optional*, defaults to 64): |
|
The number of channels in the input and output (specify if the input is **continuous**). |
|
num_layers (`int`, *optional*, defaults to 1): |
|
The number of layers of Transformer blocks to use. |
|
cross_attention_dim (`int`, *optional*): |
|
Dimensionality of conditional embeddings for cross-attention mechanisms |
|
use_cross_attention_2 (`bool`, *optional*): |
|
Flag to enable secondary cross-attention mechanism. Used for multi-modal conditioning |
|
when processing hybrid inputs (e.g., text + image prompts)[1](@ref). |
|
cross_attention_2_dim (`int`, *optional*, defaults to 1024): |
|
Dimensionality of secondary cross-attention embeddings. Specifies encoding dimensions |
|
for additional conditional modalities when use_cross_attention_2 is enabled[1](@ref). |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
_no_split_modules = ["MultiCondBasicTransformerBlock", "PatchEmbed"] |
|
_skip_layerwise_casting_patterns = ["pos_embed", "norm", "adaln_single"] |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
width: int = 2048, |
|
in_channels: int = 4, |
|
num_layers: int = 28, |
|
cross_attention_dim: int = 768, |
|
use_cross_attention_2: bool = True, |
|
cross_attention_2_dim: int = 1024, |
|
use_cross_attention_3: bool = True, |
|
cross_attention_3_dim: int = 1024, |
|
): |
|
super().__init__() |
|
|
|
self.out_channels = in_channels |
|
self.num_heads = num_attention_heads |
|
self.inner_dim = width |
|
|
|
self.proj_in = nn.Linear(self.config.in_channels, self.inner_dim, bias=True) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
MultiCondBasicTransformerBlock( |
|
self.inner_dim, |
|
self.config.num_attention_heads, |
|
use_self_attention=True, |
|
use_cross_attention=True, |
|
self_attention_norm_type="ada_norm_single", |
|
cross_attention_dim=self.config.cross_attention_dim, |
|
cross_attention_norm_type="ada_norm_single", |
|
use_cross_attention_2=self.config.use_cross_attention_2, |
|
cross_attention_2_dim=self.config.cross_attention_2_dim, |
|
cross_attention_2_norm_type="ada_norm_single", |
|
use_cross_attention_3=self.config.use_cross_attention_3, |
|
cross_attention_3_dim=self.config.cross_attention_3_dim, |
|
cross_attention_3_norm_type="ada_norm_single", |
|
dropout=0.0, |
|
attention_bias=False, |
|
activation_fn="gelu-approximate", |
|
num_embeds_ada_norm=1000, |
|
norm_elementwise_affine=True, |
|
upcast_attention=False, |
|
norm_eps=1e-6, |
|
attention_type="default", |
|
) |
|
for _ in range(self.config.num_layers) |
|
] |
|
) |
|
|
|
|
|
self.norm_out = nn.RMSNorm(self.inner_dim, elementwise_affine=True, eps=1e-6) |
|
self.scale_shift_table = nn.Parameter( |
|
torch.randn(2, self.inner_dim) / self.inner_dim**0.5 |
|
) |
|
self.proj_out = nn.Linear(self.inner_dim, self.out_channels) |
|
|
|
self.adaln_single = AdaLayerNormSingle( |
|
self.inner_dim, use_additional_conditions=None |
|
) |
|
self.gradient_checkpointing = False |
|
|
|
@property |
|
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors( |
|
name: str, |
|
module: torch.nn.Module, |
|
processors: Dict[str, AttentionProcessor], |
|
): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor() |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
|
|
def set_attn_processor( |
|
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]] |
|
): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
def set_default_attn_processor(self): |
|
""" |
|
Disables custom attention processors and sets the default attention implementation. |
|
""" |
|
self.set_attn_processor(AttnProcessor2_0()) |
|
|
|
|
|
def fuse_qkv_projections(self): |
|
""" |
|
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) |
|
are fused. For cross-attention modules, key and value projection matrices are fused. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is 🧪 experimental. |
|
|
|
</Tip> |
|
""" |
|
self.original_attn_processors = None |
|
|
|
for _, attn_processor in self.attn_processors.items(): |
|
if "Added" in str(attn_processor.__class__.__name__): |
|
raise ValueError( |
|
"`fuse_qkv_projections()` is not supported for models having added KV projections." |
|
) |
|
|
|
self.original_attn_processors = self.attn_processors |
|
|
|
for module in self.modules(): |
|
if isinstance(module, Attention): |
|
module.fuse_projections(fuse=True) |
|
|
|
self.set_attn_processor(FusedAttnProcessor2_0()) |
|
|
|
|
|
def unfuse_qkv_projections(self): |
|
"""Disables the fused QKV projection if enabled. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is 🧪 experimental. |
|
|
|
</Tip> |
|
|
|
""" |
|
if self.original_attn_processors is not None: |
|
self.set_attn_processor(self.original_attn_processors) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
timestep: Optional[torch.LongTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_hidden_states_2: Optional[torch.Tensor] = None, |
|
encoder_hidden_states_3: Optional[torch.Tensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
encoder_attention_mask_2: Optional[torch.Tensor] = None, |
|
encoder_attention_mask_3: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
): |
|
""" |
|
The [`PixArtTransformer2DModel`] forward method. |
|
|
|
Args: |
|
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, n_tokens)`): |
|
Input `hidden_states`. |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): |
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to |
|
self-attention. |
|
encoder_hidden_states_2 (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): |
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to |
|
self-attention. |
|
encoder_hidden_states_3 (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): |
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to |
|
self-attention. |
|
timestep (`torch.LongTensor`, *optional*): |
|
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. |
|
cross_attention_kwargs ( `Dict[str, Any]`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
attention_mask ( `torch.Tensor`, *optional*): |
|
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask |
|
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large |
|
negative values to the attention scores corresponding to "discard" tokens. |
|
encoder_attention_mask ( `torch.Tensor`, *optional*): |
|
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: |
|
|
|
* Mask `(batch, sequence_length)` True = keep, False = discard. |
|
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. |
|
|
|
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format |
|
above. This bias will be added to the cross-attention scores. |
|
encoder_attention_mask_2 ( `torch.Tensor`, *optional*): |
|
Cross-attention mask applied to `encoder_hidden_states_2`. Two formats supported: |
|
|
|
* Mask `(batch, sequence_length)` True = keep, False = discard. |
|
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. |
|
|
|
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format |
|
above. This bias will be added to the cross-attention scores. |
|
encoder_attention_mask_3 ( `torch.Tensor`, *optional*): |
|
Cross-attention mask applied to `encoder_hidden_states_3`. Two formats supported: |
|
|
|
* Mask `(batch, sequence_length)` True = keep, False = discard. |
|
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. |
|
|
|
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format |
|
above. This bias will be added to the cross-attention scores. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
If `return_dict` is True, an [`~Transformer1DModelOutput`] is returned, otherwise a |
|
`tuple` where the first element is the sample tensor. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.ndim == 2: |
|
|
|
|
|
|
|
|
|
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: |
|
encoder_attention_mask = ( |
|
1 - encoder_attention_mask.to(hidden_states.dtype) |
|
) * -10000.0 |
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) |
|
|
|
|
|
if encoder_attention_mask_2 is not None and encoder_attention_mask_2.ndim == 2: |
|
encoder_attention_mask_2 = ( |
|
1 - encoder_attention_mask_2.to(hidden_states.dtype) |
|
) * -10000.0 |
|
encoder_attention_mask_2 = encoder_attention_mask_2.unsqueeze(1) |
|
|
|
|
|
if encoder_attention_mask_3 is not None and encoder_attention_mask_3.ndim == 2: |
|
encoder_attention_mask_3 = ( |
|
1 - encoder_attention_mask_3.to(hidden_states.dtype) |
|
) * -10000.0 |
|
encoder_attention_mask_3 = encoder_attention_mask_3.unsqueeze(1) |
|
|
|
|
|
batch_size = hidden_states.shape[0] |
|
timestep, embedded_timestep = self.adaln_single( |
|
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype |
|
) |
|
|
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
|
|
for block in self.transformer_blocks: |
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
hidden_states = self._gradient_checkpointing_func( |
|
block, |
|
hidden_states, |
|
attention_mask, |
|
encoder_hidden_states, |
|
encoder_hidden_states_2, |
|
encoder_hidden_states_3, |
|
encoder_attention_mask, |
|
encoder_attention_mask_2, |
|
encoder_attention_mask_3, |
|
timestep, |
|
cross_attention_kwargs, |
|
None, |
|
) |
|
else: |
|
hidden_states = block( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_hidden_states_2=encoder_hidden_states_2, |
|
encoder_hidden_states_3=encoder_hidden_states_3, |
|
encoder_attention_mask=encoder_attention_mask, |
|
encoder_attention_mask_2=encoder_attention_mask_2, |
|
encoder_attention_mask_3=encoder_attention_mask_3, |
|
timestep=timestep, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
class_labels=None, |
|
) |
|
|
|
|
|
shift, scale = ( |
|
self.scale_shift_table[None] |
|
+ embedded_timestep[:, None].to(self.scale_shift_table.device) |
|
).chunk(2, dim=1) |
|
hidden_states = self.norm_out(hidden_states) |
|
|
|
hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to( |
|
hidden_states.device |
|
) |
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
if not return_dict: |
|
return (hidden_states,) |
|
|
|
return Transformer1DModelOutput(sample=hidden_states) |
|
|
|
|
|
@step1x3d_geometry.register("pixart-denoiser") |
|
class PixArtDenoiser(BaseModule): |
|
@dataclass |
|
class Config(BaseModule.Config): |
|
pretrained_model_name_or_path: Optional[str] = None |
|
input_channels: int = 32 |
|
width: int = 768 |
|
layers: int = 28 |
|
num_heads: int = 16 |
|
condition_dim: int = 1024 |
|
multi_condition_type: str = "cross_attention" |
|
use_visual_condition: bool = False |
|
visual_condition_dim: int = 1024 |
|
n_views: int = 1 |
|
use_caption_condition: bool = False |
|
caption_condition_dim: int = 1024 |
|
use_label_condition: bool = False |
|
label_condition_dim: int = 1024 |
|
|
|
identity_init: bool = False |
|
|
|
cfg: Config |
|
|
|
def configure(self) -> None: |
|
self.dit_model = PixArtTransformer1DModel( |
|
num_attention_heads=self.cfg.num_heads, |
|
width=self.cfg.width, |
|
in_channels=self.cfg.input_channels, |
|
num_layers=self.cfg.layers, |
|
cross_attention_dim=self.cfg.condition_dim, |
|
use_cross_attention_2=self.cfg.use_caption_condition |
|
and self.cfg.multi_condition_type == "cross_attention", |
|
cross_attention_2_dim=self.cfg.condition_dim, |
|
use_cross_attention_3=self.cfg.use_label_condition |
|
and self.cfg.multi_condition_type == "cross_attention", |
|
cross_attention_3_dim=self.cfg.condition_dim, |
|
) |
|
if ( |
|
self.cfg.use_visual_condition |
|
and self.cfg.visual_condition_dim != self.cfg.condition_dim |
|
): |
|
self.proj_visual_condtion = nn.Sequential( |
|
nn.RMSNorm(self.cfg.visual_condition_dim), |
|
nn.Linear(self.cfg.visual_condition_dim, self.cfg.condition_dim), |
|
) |
|
if ( |
|
self.cfg.use_caption_condition |
|
and self.cfg.caption_condition_dim != self.cfg.condition_dim |
|
): |
|
self.proj_caption_condtion = nn.Sequential( |
|
nn.RMSNorm(self.cfg.caption_condition_dim), |
|
nn.Linear(self.cfg.caption_condition_dim, self.cfg.condition_dim), |
|
) |
|
if ( |
|
self.cfg.use_label_condition |
|
and self.cfg.label_condition_dim != self.cfg.condition_dim |
|
): |
|
self.proj_label_condtion = nn.Sequential( |
|
nn.RMSNorm(self.cfg.label_condition_dim), |
|
nn.Linear(self.cfg.label_condition_dim, self.cfg.condition_dim), |
|
) |
|
|
|
if self.cfg.identity_init: |
|
self.identity_initialize() |
|
|
|
if self.cfg.pretrained_model_name_or_path: |
|
print( |
|
f"Loading pretrained DiT model from {self.cfg.pretrained_model_name_or_path}" |
|
) |
|
ckpt = torch.load( |
|
self.cfg.pretrained_model_name_or_path, |
|
map_location="cpu", |
|
weights_only=False, |
|
) |
|
if "state_dict" in ckpt.keys(): |
|
ckpt = ckpt["state_dict"] |
|
self.load_state_dict(ckpt, strict=True) |
|
|
|
def identity_initialize(self): |
|
for block in self.dit_model.blocks: |
|
nn.init.constant_(block.attn.c_proj.weight, 0) |
|
nn.init.constant_(block.attn.c_proj.bias, 0) |
|
nn.init.constant_(block.cross_attn.c_proj.weight, 0) |
|
nn.init.constant_(block.cross_attn.c_proj.bias, 0) |
|
nn.init.constant_(block.mlp.c_proj.weight, 0) |
|
nn.init.constant_(block.mlp.c_proj.bias, 0) |
|
|
|
def forward( |
|
self, |
|
model_input: torch.FloatTensor, |
|
timestep: torch.LongTensor, |
|
visual_condition: Optional[torch.FloatTensor] = None, |
|
caption_condition: Optional[torch.FloatTensor] = None, |
|
label_condition: Optional[torch.FloatTensor] = None, |
|
attention_kwargs: Dict[str, torch.Tensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
return_dict: bool = True, |
|
): |
|
r""" |
|
Args: |
|
model_input (torch.FloatTensor): [bs, n_data, c] |
|
timestep (torch.LongTensor): [bs,] |
|
visual_condition (torch.FloatTensor): [bs, visual_context_tokens, c] |
|
text_condition (torch.FloatTensor): [bs, text_context_tokens, c] |
|
|
|
Returns: |
|
sample (torch.FloatTensor): [bs, n_data, c] |
|
|
|
""" |
|
|
|
B, n_data, _ = model_input.shape |
|
|
|
|
|
condition = [] |
|
if self.cfg.use_visual_condition: |
|
assert visual_condition.shape[-1] == self.cfg.visual_condition_dim |
|
if self.cfg.visual_condition_dim != self.cfg.condition_dim: |
|
visual_condition = self.proj_visual_condtion(visual_condition) |
|
condition.append(visual_condition) |
|
else: |
|
visual_condition = None |
|
if self.cfg.use_caption_condition: |
|
assert caption_condition.shape[-1] == self.cfg.caption_condition_dim |
|
if self.cfg.caption_condition_dim != self.cfg.condition_dim: |
|
caption_condition = self.proj_caption_condtion(caption_condition) |
|
condition.append(caption_condition) |
|
else: |
|
caption_condition = None |
|
if self.cfg.use_label_condition: |
|
assert label_condition.shape[-1] == self.cfg.label_condition_dim |
|
if self.cfg.label_condition_dim != self.cfg.condition_dim: |
|
label_condition = self.proj_label_condtion(label_condition) |
|
condition.append(label_condition) |
|
else: |
|
label_condition = None |
|
assert not ( |
|
visual_condition is None |
|
and caption_condition is None |
|
and label_condition is None |
|
) |
|
|
|
|
|
if self.cfg.multi_condition_type == "cross_attention": |
|
output = self.dit_model( |
|
model_input, |
|
timestep, |
|
visual_condition, |
|
caption_condition, |
|
label_condition, |
|
cross_attention_kwargs, |
|
return_dict=return_dict, |
|
) |
|
elif self.cfg.multi_condition_type == "in_context": |
|
output = self.dit_model( |
|
model_input, |
|
timestep, |
|
torch.cat(condition, dim=1), |
|
None, |
|
None, |
|
cross_attention_kwargs, |
|
return_dict=return_dict, |
|
) |
|
else: |
|
raise ValueError |
|
|
|
return output |
|
|