ReubenSun's picture
1
2ac1c2d
raw
history blame
6.54 kB
import random
import torch
from torch import nn
import numpy as np
import re
from einops import rearrange
from dataclasses import dataclass
from torchvision import transforms
from diffusers.models.modeling_utils import ModelMixin
from transformers.utils import ModelOutput
from typing import Iterable, Optional, Union, List
import step1x3d_geometry
from step1x3d_geometry.utils.typing import *
from step1x3d_geometry.utils.misc import get_device
from .base import BaseLabelEncoder
DEFAULT_POSE = 0 # "unknown", "t-pose", "a-pose", uncond
NUM_POSE_CLASSES = 3
POSE_MAPPING = {"unknown": 0, "t-pose": 1, "a-pose": 2, "uncond": 3}
DEFAULT_SYMMETRY_TYPE = 0 # "asymmetry", "x", uncond
NUM_SYMMETRY_TYPE_CLASSES = 2
SYMMETRY_TYPE_MAPPING = {"asymmetry": 0, "x": 1, "y": 0, "z": 0, "uncond": 2}
DEFAULT_GEOMETRY_QUALITY = 0 # "normal", "smooth", "sharp", uncond,
NUM_GEOMETRY_QUALITY_CLASSES = 3
GEOMETRY_QUALITY_MAPPING = {"normal": 0, "smooth": 1, "sharp": 2, "uncod": 3}
@step1x3d_geometry.register("label-encoder")
class LabelEncoder(BaseLabelEncoder, ModelMixin):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
Args:
num_classes (`int`): The number of classes.
hidden_size (`int`): The size of the vector embeddings.
"""
def configure(self) -> None:
super().configure()
if self.cfg.zero_uncond_embeds:
self.embedding_table_tpose = nn.Embedding(
NUM_POSE_CLASSES, self.cfg.hidden_size
)
self.embedding_table_symmetry_type = nn.Embedding(
NUM_SYMMETRY_TYPE_CLASSES, self.cfg.hidden_size
)
self.embedding_table_geometry_quality = nn.Embedding(
NUM_GEOMETRY_QUALITY_CLASSES, self.cfg.hidden_size
)
else:
self.embedding_table_tpose = nn.Embedding(
NUM_POSE_CLASSES + 1, self.cfg.hidden_size
)
self.embedding_table_symmetry_type = nn.Embedding(
NUM_SYMMETRY_TYPE_CLASSES + 1, self.cfg.hidden_size
)
self.embedding_table_geometry_quality = nn.Embedding(
NUM_GEOMETRY_QUALITY_CLASSES + 1, self.cfg.hidden_size
)
if self.cfg.zero_uncond_embeds:
self.empty_label_embeds = torch.zeros((1, 3, self.cfg.hidden_size)).detach()
else:
self.empty_label_embeds = (
self.encode_label( # the last class label is for the uncond
[{"pose": "", "symetry": "", "geometry_type": ""}]
).detach()
)
# load pretrained_model_name_or_path
if self.cfg.pretrained_model_name_or_path is not None:
print(f"Loading ckpt from {self.cfg.pretrained_model_name_or_path}")
ckpt = torch.load(
self.cfg.pretrained_model_name_or_path, map_location="cpu"
)["state_dict"]
pretrained_model_ckpt = {}
for k, v in ckpt.items():
if k.startswith("label_condition."):
pretrained_model_ckpt[k.replace("label_condition.", "")] = v
self.load_state_dict(pretrained_model_ckpt, strict=True)
def encode_label(self, labels: List[dict]) -> torch.FloatTensor:
tpose_label_embeds = []
symmetry_type_label_embeds = []
geometry_quality_label_embeds = []
for label in labels:
if "pose" in label.keys():
if label["pose"] is None or label["pose"] == "":
tpose_label_embeds.append(
torch.zeros(self.cfg.hidden_size).detach().to(get_device())
)
else:
tpose_label_embeds.append(
self.embedding_table_symmetry_type(
torch.tensor(POSE_MAPPING[label["pose"][0]]).to(
get_device()
)
)
)
else:
tpose_label_embeds.append(
self.embedding_table_tpose(
torch.tensor(DEFAULT_POSE).to(get_device())
)
)
if "symmetry" in label.keys():
if label["symmetry"] is None or label["symmetry"] == "":
symmetry_type_label_embeds.append(
torch.zeros(self.cfg.hidden_size).detach().to(get_device())
)
else:
symmetry_type_label_embeds.append(
self.embedding_table_symmetry_type(
torch.tensor(
SYMMETRY_TYPE_MAPPING[label["symmetry"][0]]
).to(get_device())
)
)
else:
symmetry_type_label_embeds.append(
self.embedding_table_symmetry_type(
torch.tensor(DEFAULT_SYMMETRY_TYPE).to(get_device())
)
)
if "geometry_type" in label.keys():
if label["geometry_type"] is None or label["geometry_type"] == "":
geometry_quality_label_embeds.append(
torch.zeros(self.cfg.hidden_size).detach().to(get_device())
)
else:
geometry_quality_label_embeds.append(
self.embedding_table_geometry_quality(
torch.tensor(
GEOMETRY_QUALITY_MAPPING[label["geometry_type"][0]]
).to(get_device())
)
)
else:
geometry_quality_label_embeds.append(
self.embedding_table_geometry_quality(
torch.tensor(DEFAULT_GEOMETRY_QUALITY).to(get_device())
)
)
tpose_label_embeds = torch.stack(tpose_label_embeds)
symmetry_type_label_embeds = torch.stack(symmetry_type_label_embeds)
geometry_quality_label_embeds = torch.stack(geometry_quality_label_embeds)
label_embeds = torch.stack(
[
tpose_label_embeds,
symmetry_type_label_embeds,
geometry_quality_label_embeds,
],
dim=1,
).to(self.dtype)
return label_embeds