ReubenSun's picture
1
2ac1c2d
raw
history blame
12.1 kB
import random
import torch
from torch import nn
import numpy as np
import re
from einops import rearrange
from dataclasses import dataclass
from torchvision import transforms
from diffusers.models.modeling_utils import ModelMixin
from transformers import AutoImageProcessor, AutoModel
from transformers.utils import ModelOutput
from typing import Iterable, Optional, Union, List
import step1x3d_geometry
from step1x3d_geometry.utils.typing import *
from .base import BaseVisualEncoder, ImageType
from .dinov2.modeling_dinov2 import Dinov2Model
from .dinov2.modeling_conditional_dinov2 import ConditionalDinov2Model
from .dinov2_with_registers.modeling_dinov2_with_registers import (
Dinov2WithRegistersModel,
)
class DINOEmbedOutput(ModelOutput):
last_hidden_state: torch.FloatTensor = None
pooler_output: torch.FloatTensor = None
@step1x3d_geometry.register("dinov2-encoder")
class Dinov2Encoder(BaseVisualEncoder, ModelMixin):
@dataclass
class Config(BaseVisualEncoder.Config):
pretrained_model_name_or_path: Optional[str] = (
None # the pretrained model name or path for condition model
)
pretrained_dino_name_or_path: Optional[str] = (
None # the pretrained model name or path for dino
)
freeze_modulation_dino: bool = False
enable_gradient_checkpointing: bool = False
image_size: int = 224
dino_type: Optional[str] = None
kwargs: Optional[dict] = None
cfg: Config
def configure(self) -> None:
super().configure()
# Load the DINOV2 model and processor
if not self.cfg.encode_camera:
if self.cfg.pretrained_dino_name_or_path is not None:
self.cfg.dino_type = f"facebook/{self.cfg.pretrained_dino_name_or_path.split('facebook--')[-1].split('/')[0]}"
if self.cfg.kwargs is not None:
self.dino_model: Dinov2Model = AutoModel.from_pretrained(
self.cfg.pretrained_dino_name_or_path, **self.cfg.kwargs
)
else:
self.dino_model: Dinov2Model = AutoModel.from_pretrained(
self.cfg.pretrained_dino_name_or_path
)
else:
if (
self.cfg.pretrained_model_name_or_path is None
): # default to load Dinov2-base model
assert (
self.cfg.dino_type is not None
), "The dino_type should be provided"
print(f"Loading Dinov2 model from {self.cfg.dino_type}")
if "reg" in self.cfg.dino_type:
self.dino_model: Dinov2WithRegistersModel = (
Dinov2WithRegistersModel(
config=Dinov2WithRegistersModel.config_class.from_pretrained(
self.cfg.dino_type,
)
)
)
else:
self.dino_model: Dinov2Model = Dinov2Model(
config=Dinov2Model.config_class.from_pretrained(
self.dino_type,
)
)
elif "dinov2base" in self.cfg.pretrained_model_name_or_path:
print("Loading Dinov2 model from facebook/dinov2-base")
self.cfg.dino_type = "facebook/dinov2-base"
self.dino_model: Dinov2Model = Dinov2Model(
config=Dinov2Model.config_class.from_pretrained(
"facebook/dinov2-base",
)
)
elif "dinov2regbase" in self.cfg.pretrained_model_name_or_path:
print(
"Loading Dinov2 model from facebook/dinov2-with-registers-base"
)
self.cfg.dino_type = "facebook/dinov2-with-registers-base"
self.dino_model: Dinov2WithRegistersModel = (
Dinov2WithRegistersModel(
config=Dinov2WithRegistersModel.config_class.from_pretrained(
"facebook/dinov2-with-registers-base",
)
)
)
elif "dinov2reglarge" in self.cfg.pretrained_model_name_or_path:
print(
"Loading Dinov2 model from facebook/dinov2-with-registers-large"
)
self.cfg.dino_type = "facebook/dinov2-with-registers-large"
self.dino_model: Dinov2WithRegistersModel = (
Dinov2WithRegistersModel(
config=Dinov2WithRegistersModel.config_class.from_pretrained(
"facebook/dinov2-with-registers-large",
)
)
)
else:
raise ValueError(
f"Unknown Dinov2 model: {self.cfg.pretrained_model_name_or_path}"
)
else:
# dino
conditional_vit_config = (
ConditionalDinov2Model.config_class.from_pretrained(
self.cfg.pretrained_dino_name_or_path,
)
)
conditional_vit_config.modulation_dim = self.cfg.camera_embeds_dim
self.dino_model: ConditionalDinov2Model = (
ConditionalDinov2Model.from_pretrained(
self.cfg.pretrained_dino_name_or_path, config=conditional_vit_config
)
)
self.image_preprocess_dino = AutoImageProcessor.from_pretrained(
self.cfg.dino_type
if self.cfg.pretrained_dino_name_or_path is None
else self.cfg.pretrained_dino_name_or_path
)
self.transform_dino = transforms.Compose(
[
transforms.Resize(
self.cfg.image_size,
transforms.InterpolationMode.BICUBIC,
antialias=True,
),
transforms.CenterCrop(
self.cfg.image_size
), # crop a (image_size, image_size) square
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
),
]
)
if self.cfg.enable_gradient_checkpointing:
self.dino_model.encoder.gradient_checkpointing = True
if self.cfg.zero_uncond_embeds:
self.empty_image_embeds = torch.zeros(
(
self.cfg.n_views,
(self.cfg.image_size // 14) ** 2 + 1,
self.dino_model.config.hidden_size,
)
).detach()
else:
if self.cfg.encode_camera:
self.empty_image_embeds = self.encode_image_dino(
torch.zeros(
self.cfg.n_views, self.cfg.image_size, self.cfg.image_size, 3
),
self.cameras[: self.cfg.n_views],
).detach()
else:
self.empty_image_embeds = self.encode_image_dino(
torch.zeros(
self.cfg.n_views, self.cfg.image_size, self.cfg.image_size, 3
)
).detach()
# freeze the dino model parameters
self.dino_model.eval()
for k, p in self.dino_model.named_parameters():
ks = k.split(".")
if (
"mod_norm1" in ks
or "mod_norm2" in ks
and not self.cfg.freeze_modulation_dino
):
p.requires_grad_(not self.cfg.freeze_modulation_dino)
else:
p.requires_grad_(False)
# load pretrained_model_name_or_path
if self.cfg.pretrained_model_name_or_path is not None:
print(f"Loading ckpt from {self.cfg.pretrained_model_name_or_path}")
ckpt = torch.load(
self.cfg.pretrained_model_name_or_path, map_location="cpu"
)["state_dict"]
pretrained_model_ckpt = {}
for k, v in ckpt.items():
if k.startswith("visual_condition."):
pretrained_model_ckpt[k.replace("visual_condition.", "")] = v
self.load_state_dict(pretrained_model_ckpt, strict=True)
def encode_image_dino(
self,
images: Iterable[Optional[ImageType]],
cameras: Optional[torch.Tensor] = None,
force_none_camera_embeds: bool = False,
return_dict: bool = False,
**kwargs,
) -> torch.FloatTensor:
camera_embeds = None
if isinstance(images, (np.ndarray, torch.Tensor)): # for training process
assert (
images.min() >= 0.0 and images.max() <= 1.0
), "The pixel values should be in the range of [0, 1]"
if self.cfg.encode_camera:
assert cameras is not None, "The cameras should be provided"
camera_embeds = self.encode_camera(cameras)
pixel_values = self.transform_dino(images.permute(0, 3, 1, 2))
else: # for inference process
if self.cfg.encode_camera:
if cameras is None:
bs = len(images) // self.cfg.n_views
cameras = (
self.cameras[: self.cfg.n_views]
.repeat(bs, 1, 1)
.to(self.dino_model.device)
)
camera_embeds = self.encode_camera(cameras)
pixel_values = self.image_preprocess_dino.preprocess(
images,
return_tensors="pt",
do_rescale=True,
do_resize=True,
size=self.cfg.image_size,
crop_size=self.cfg.image_size,
).pixel_values
if force_none_camera_embeds:
camera_embeds = None
if pixel_values.ndim == 4:
pixel_values = pixel_values.unsqueeze(1)
if camera_embeds is not None:
camera_embeds = camera_embeds.unsqueeze(1)
if self.cfg.encode_camera and camera_embeds is not None:
vision_outputs = self.dino_model(
rearrange(
pixel_values.to(self.dino_model.device), "B N C H W -> (B N) C H W"
),
condition=rearrange(camera_embeds, "B N C -> (B N) C"),
)
else:
vision_outputs = self.dino_model(
rearrange(
pixel_values.to(self.dino_model.device), "B N C H W -> (B N) C H W"
),
)
if return_dict:
# dino
dino_embeds_dict = DINOEmbedOutput(
last_hidden_state=vision_outputs.last_hidden_state,
pooler_output=vision_outputs.pooler_output,
)
return dino_embeds_dict
else:
return vision_outputs.last_hidden_state
def encode_image(
self,
images: Iterable[Optional[ImageType]],
cameras: Optional[torch.Tensor] = None,
force_none_camera_embeds: bool = False,
return_dict: bool = False,
**kwargs,
) -> torch.FloatTensor:
dino_embeds = self.encode_image_dino(images, cameras)
if (
self.dino_model.__class__.__name__ == "Dinov2WithRegistersModel"
): # x_norm_clstoken, x_norm_regtokens, x_norm_patchtokens
dino_embeds = torch.cat(
[
dino_embeds[:, :1],
dino_embeds[:, self.dino_model.config.num_register_tokens + 1 :],
],
dim=1,
)
return dino_embeds