|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, Optional, Tuple, Union |
|
import collections.abc |
|
from itertools import repeat |
|
|
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
import torch.distributed as dist |
|
from diffusers.utils.torch_utils import maybe_allow_in_graph |
|
from diffusers.utils.import_utils import is_torch_npu_available, is_xformers_available |
|
from diffusers.models.attention import FeedForward |
|
from diffusers.models.attention_processor import Attention, AttentionProcessor |
|
from diffusers.models.normalization import ( |
|
AdaLayerNormContinuous, |
|
AdaLayerNormZero, |
|
AdaLayerNormZeroSingle, |
|
FP32LayerNorm, |
|
LayerNorm, |
|
) |
|
|
|
from .attention_processor import FluxAttnProcessor2_0, AttnProcessor2_0 |
|
|
|
|
|
@maybe_allow_in_graph |
|
class MultiCondBasicTransformerBlock(nn.Module): |
|
r""" |
|
A basic Transformer block. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input and output. |
|
num_attention_heads (`int`): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
num_embeds_ada_norm (: |
|
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. |
|
attention_bias (: |
|
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. |
|
only_cross_attention (`bool`, *optional*): |
|
Whether to use only cross-attention layers. In this case two cross attention layers are used. |
|
double_self_attention (`bool`, *optional*): |
|
Whether to use two self-attention layers. In this case no cross attention layers are used. |
|
upcast_attention (`bool`, *optional*): |
|
Whether to upcast the attention computation to float32. This is useful for mixed precision training. |
|
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): |
|
Whether to use learnable elementwise affine parameters for normalization. |
|
norm_type (`str`, *optional*, defaults to `"layer_norm"`): |
|
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. |
|
final_dropout (`bool` *optional*, defaults to False): |
|
Whether to apply a final dropout after the last feed-forward layer. |
|
attention_type (`str`, *optional*, defaults to `"default"`): |
|
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. |
|
positional_embeddings (`str`, *optional*, defaults to `None`): |
|
The type of positional embeddings to apply to. |
|
num_positional_embeddings (`int`, *optional*, defaults to `None`): |
|
The maximum number of positional embeddings to apply. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
use_self_attention: bool = True, |
|
use_cross_attention: bool = False, |
|
self_attention_norm_type: Optional[ |
|
str |
|
] = "layer_norm", |
|
cross_attention_dim: Optional[int] = None, |
|
cross_attention_norm_type: Optional[str] = None, |
|
|
|
use_cross_attention_2: bool = False, |
|
cross_attention_2_dim: Optional[int] = None, |
|
cross_attention_2_norm_type: Optional[str] = None, |
|
|
|
use_cross_attention_3: bool = False, |
|
cross_attention_3_dim: Optional[int] = None, |
|
cross_attention_3_norm_type: Optional[str] = None, |
|
dropout=0.0, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
attention_bias: bool = False, |
|
only_cross_attention: bool = False, |
|
double_self_attention: bool = False, |
|
upcast_attention: bool = False, |
|
norm_elementwise_affine: bool = True, |
|
norm_eps: float = 1e-5, |
|
final_dropout: bool = False, |
|
attention_type: str = "default", |
|
positional_embeddings: Optional[str] = None, |
|
num_positional_embeddings: Optional[int] = None, |
|
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None, |
|
ada_norm_bias: Optional[int] = None, |
|
ff_inner_dim: Optional[int] = None, |
|
ff_bias: bool = True, |
|
attention_out_bias: bool = True, |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.num_attention_heads = num_attention_heads |
|
self.use_self_attention = use_self_attention |
|
self.use_cross_attention = use_cross_attention |
|
self.self_attention_norm_type = self_attention_norm_type |
|
self.cross_attention_dim = cross_attention_dim |
|
self.cross_attention_norm_type = cross_attention_norm_type |
|
self.use_cross_attention_2 = use_cross_attention_2 |
|
self.cross_attention_2_dim = cross_attention_2_dim |
|
self.cross_attention_2_norm_type = cross_attention_2_norm_type |
|
self.use_cross_attention_3 = use_cross_attention_3 |
|
self.cross_attention_3_dim = cross_attention_3_dim |
|
self.cross_attention_3_norm_type = cross_attention_3_norm_type |
|
self.dropout = dropout |
|
self.cross_attention_dim = cross_attention_dim |
|
self.activation_fn = activation_fn |
|
self.attention_bias = attention_bias |
|
self.double_self_attention = double_self_attention |
|
self.norm_elementwise_affine = norm_elementwise_affine |
|
self.positional_embeddings = positional_embeddings |
|
self.num_positional_embeddings = num_positional_embeddings |
|
self.only_cross_attention = only_cross_attention |
|
|
|
|
|
self.use_ada_layer_norm_zero = ( |
|
num_embeds_ada_norm is not None |
|
) and self_attention_norm_type == "ada_norm_zero" |
|
self.use_ada_layer_norm = ( |
|
num_embeds_ada_norm is not None |
|
) and self_attention_norm_type == "ada_norm" |
|
self.use_ada_layer_norm_single = self_attention_norm_type == "ada_norm_single" |
|
self.use_layer_norm = self_attention_norm_type == "layer_norm" |
|
self.use_ada_layer_norm_continuous = ( |
|
self_attention_norm_type == "ada_norm_continuous" |
|
) |
|
|
|
if ( |
|
self_attention_norm_type in ("ada_norm", "ada_norm_zero") |
|
and num_embeds_ada_norm is None |
|
): |
|
raise ValueError( |
|
f"`self_attention_norm_type` is set to {self_attention_norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" |
|
f" define `num_embeds_ada_norm` if setting `self_attention_norm_type` to {self_attention_norm_type}." |
|
) |
|
|
|
self.self_attention_norm_type = self_attention_norm_type |
|
self.num_embeds_ada_norm = num_embeds_ada_norm |
|
|
|
if positional_embeddings and (num_positional_embeddings is None): |
|
raise ValueError( |
|
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." |
|
) |
|
|
|
if positional_embeddings == "sinusoidal": |
|
self.pos_embed = SinusoidalPositionalEmbedding( |
|
dim, max_seq_length=num_positional_embeddings |
|
) |
|
else: |
|
self.pos_embed = None |
|
|
|
|
|
if use_self_attention: |
|
|
|
if self_attention_norm_type == "ada_norm": |
|
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) |
|
elif self_attention_norm_type == "ada_norm_zero": |
|
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) |
|
elif self_attention_norm_type == "ada_norm_continuous": |
|
self.norm1 = AdaLayerNormContinuous( |
|
dim, |
|
ada_norm_continous_conditioning_embedding_dim, |
|
norm_elementwise_affine, |
|
norm_eps, |
|
ada_norm_bias, |
|
"rms_norm", |
|
) |
|
elif ( |
|
self_attention_norm_type == "fp32_layer_norm" |
|
or self_attention_norm_type is None |
|
): |
|
self.norm1 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) |
|
else: |
|
self.norm1 = nn.RMSNorm( |
|
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps |
|
) |
|
|
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=dim // num_attention_heads, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
cross_attention_dim=( |
|
cross_attention_dim if only_cross_attention else None |
|
), |
|
upcast_attention=upcast_attention, |
|
out_bias=attention_out_bias, |
|
processor=AttnProcessor2_0(), |
|
) |
|
|
|
|
|
if use_cross_attention or double_self_attention: |
|
|
|
|
|
|
|
if cross_attention_norm_type == "ada_norm": |
|
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) |
|
elif cross_attention_norm_type == "ada_norm_continuous": |
|
self.norm2 = AdaLayerNormContinuous( |
|
dim, |
|
ada_norm_continous_conditioning_embedding_dim, |
|
norm_elementwise_affine, |
|
norm_eps, |
|
ada_norm_bias, |
|
"rms_norm", |
|
) |
|
elif ( |
|
cross_attention_norm_type == "fp32_layer_norm" |
|
or cross_attention_norm_type is None |
|
): |
|
self.norm2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) |
|
else: |
|
self.norm2 = nn.RMSNorm( |
|
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps |
|
) |
|
|
|
self.attn2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=( |
|
cross_attention_dim if not double_self_attention else None |
|
), |
|
heads=num_attention_heads, |
|
dim_head=dim // num_attention_heads, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
out_bias=attention_out_bias, |
|
processor=AttnProcessor2_0(), |
|
) |
|
else: |
|
self.norm2 = None |
|
self.attn2 = None |
|
|
|
|
|
if use_cross_attention_2: |
|
assert cross_attention_2_dim is not None |
|
if cross_attention_2_norm_type == "ada_norm": |
|
self.norm2_2 = AdaLayerNorm(dim, num_embeds_ada_norm) |
|
elif cross_attention_2_norm_type == "ada_norm_continuous": |
|
self.norm2_2 = AdaLayerNormContinuous( |
|
dim, |
|
ada_norm_continous_conditioning_embedding_dim, |
|
norm_elementwise_affine, |
|
norm_eps, |
|
ada_norm_bias, |
|
"rms_norm", |
|
) |
|
elif ( |
|
cross_attention_2_norm_type == "fp32_layer_norm" |
|
or cross_attention_2_norm_type is None |
|
): |
|
self.norm2_2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) |
|
else: |
|
self.norm2_2 = nn.RMSNorm( |
|
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps |
|
) |
|
|
|
self.attn2_2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_2_dim, |
|
heads=num_attention_heads, |
|
dim_head=dim // num_attention_heads, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
out_bias=attention_out_bias, |
|
processor=AttnProcessor2_0(), |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else: |
|
self.norm2_2 = None |
|
self.attn2_2 = None |
|
|
|
|
|
if use_cross_attention_3: |
|
assert cross_attention_3_dim is not None |
|
if cross_attention_3_norm_type == "ada_norm": |
|
self.norm2_3 = AdaLayerNorm(dim, num_embeds_ada_norm) |
|
elif cross_attention_3_norm_type == "ada_norm_continuous": |
|
self.norm2_3 = AdaLayerNormContinuous( |
|
dim, |
|
ada_norm_continous_conditioning_embedding_dim, |
|
norm_elementwise_affine, |
|
norm_eps, |
|
ada_norm_bias, |
|
"rms_norm", |
|
) |
|
elif ( |
|
cross_attention_3_norm_type == "fp32_layer_norm" |
|
or cross_attention_3_norm_type is None |
|
): |
|
self.norm2_3 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) |
|
else: |
|
self.norm2_3 = nn.RMSNorm( |
|
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps |
|
) |
|
|
|
self.attn2_3 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_3_dim, |
|
heads=num_attention_heads, |
|
dim_head=dim // num_attention_heads, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
out_bias=attention_out_bias, |
|
processor=AttnProcessor2_0(), |
|
) |
|
else: |
|
self.norm2_3 = None |
|
self.attn2_3 = None |
|
|
|
|
|
if self_attention_norm_type == "ada_norm_continuous": |
|
self.norm3 = AdaLayerNormContinuous( |
|
dim, |
|
ada_norm_continous_conditioning_embedding_dim, |
|
norm_elementwise_affine, |
|
norm_eps, |
|
ada_norm_bias, |
|
"layer_norm", |
|
) |
|
|
|
elif self_attention_norm_type in ["ada_norm_zero", "ada_norm", "layer_norm"]: |
|
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) |
|
elif self_attention_norm_type == "layer_norm_i2vgen": |
|
self.norm3 = None |
|
|
|
self.ff = FeedForward( |
|
dim, |
|
dropout=dropout, |
|
activation_fn=activation_fn, |
|
final_dropout=final_dropout, |
|
inner_dim=ff_inner_dim, |
|
bias=ff_bias, |
|
) |
|
|
|
|
|
if attention_type == "gated" or attention_type == "gated-text-image": |
|
self.fuser = GatedSelfAttentionDense( |
|
dim, cross_attention_dim, num_attention_heads, attention_head_dim |
|
) |
|
|
|
|
|
if self_attention_norm_type == "ada_norm_single": |
|
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) |
|
|
|
|
|
self._chunk_size = None |
|
self._chunk_dim = 0 |
|
|
|
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): |
|
|
|
self._chunk_size = chunk_size |
|
self._chunk_dim = dim |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_hidden_states_2: Optional[torch.Tensor] = None, |
|
encoder_hidden_states_3: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
encoder_attention_mask_2: Optional[torch.Tensor] = None, |
|
encoder_attention_mask_3: Optional[torch.Tensor] = None, |
|
timestep: Optional[torch.LongTensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
class_labels: Optional[torch.LongTensor] = None, |
|
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, |
|
) -> torch.Tensor: |
|
if cross_attention_kwargs is not None: |
|
if cross_attention_kwargs.get("scale", None) is not None: |
|
logger.warning( |
|
"Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored." |
|
) |
|
|
|
|
|
|
|
batch_size = hidden_states.shape[0] |
|
|
|
if self.self_attention_norm_type == "ada_norm": |
|
norm_hidden_states = self.norm1(hidden_states, timestep) |
|
elif self.self_attention_norm_type == "ada_norm_zero": |
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( |
|
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype |
|
) |
|
elif self.self_attention_norm_type in ["layer_norm", "layer_norm_i2vgen"]: |
|
norm_hidden_states = self.norm1(hidden_states) |
|
elif self.self_attention_norm_type == "ada_norm_continuous": |
|
norm_hidden_states = self.norm1( |
|
hidden_states, added_cond_kwargs["pooled_text_emb"] |
|
) |
|
elif self.self_attention_norm_type == "ada_norm_single": |
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( |
|
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) |
|
).chunk(6, dim=1) |
|
norm_hidden_states = self.norm1(hidden_states) |
|
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa |
|
else: |
|
raise ValueError("Incorrect norm used") |
|
|
|
if self.pos_embed is not None: |
|
norm_hidden_states = self.pos_embed(norm_hidden_states) |
|
|
|
|
|
cross_attention_kwargs = ( |
|
cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} |
|
) |
|
gligen_kwargs = cross_attention_kwargs.pop("gligen", None) |
|
|
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=( |
|
encoder_hidden_states if self.only_cross_attention else None |
|
), |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
if self.self_attention_norm_type == "ada_norm_zero": |
|
attn_output = gate_msa.unsqueeze(1) * attn_output |
|
elif self.self_attention_norm_type == "ada_norm_single": |
|
attn_output = gate_msa * attn_output |
|
|
|
hidden_states = attn_output + hidden_states |
|
if hidden_states.ndim == 4: |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
|
|
if gligen_kwargs is not None: |
|
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) |
|
|
|
|
|
if self.attn2 is not None: |
|
if self.cross_attention_norm_type == "ada_norm": |
|
norm_hidden_states = self.norm2(hidden_states, timestep) |
|
elif self.cross_attention_norm_type in [ |
|
"ada_norm_zero", |
|
"layer_norm", |
|
"layer_norm_i2vgen", |
|
]: |
|
norm_hidden_states = self.norm2(hidden_states) |
|
elif self.cross_attention_norm_type == "ada_norm_single": |
|
|
|
|
|
norm_hidden_states = hidden_states |
|
elif self.cross_attention_norm_type == "ada_norm_continuous": |
|
norm_hidden_states = self.norm2( |
|
hidden_states, added_cond_kwargs["pooled_text_emb"] |
|
) |
|
else: |
|
raise ValueError("Incorrect norm") |
|
|
|
if ( |
|
self.pos_embed is not None |
|
and self.cross_attention_norm_type != "ada_norm_single" |
|
): |
|
norm_hidden_states = self.pos_embed(norm_hidden_states) |
|
|
|
attn_output = self.attn2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
if self.attn2_2 is not None: |
|
if self.cross_attention_2_norm_type == "ada_norm": |
|
norm_hidden_states = self.norm2_2(hidden_states, timestep) |
|
elif self.cross_attention_2_norm_type in [ |
|
"ada_norm_zero", |
|
"layer_norm", |
|
"layer_norm_i2vgen", |
|
]: |
|
norm_hidden_states = self.norm2_2(hidden_states) |
|
elif self.cross_attention_2_norm_type == "ada_norm_single": |
|
|
|
|
|
norm_hidden_states = hidden_states |
|
elif self.cross_attention_2_norm_type == "ada_norm_continuous": |
|
norm_hidden_states = self.norm2_2( |
|
hidden_states, added_cond_kwargs["pooled_text_emb"] |
|
) |
|
else: |
|
raise ValueError("Incorrect norm") |
|
|
|
if ( |
|
self.pos_embed is not None |
|
and self.cross_attention_2_norm_type != "ada_norm_single" |
|
): |
|
norm_hidden_states = self.pos_embed(norm_hidden_states) |
|
|
|
attn_output_2 = self.attn2_2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states_2, |
|
attention_mask=encoder_attention_mask_2, |
|
**cross_attention_kwargs, |
|
) |
|
hidden_states = attn_output_2 + hidden_states |
|
|
|
|
|
if self.attn2_3 is not None: |
|
if self.cross_attention_3_norm_type == "ada_norm": |
|
norm_hidden_states = self.norm2_3(hidden_states, timestep) |
|
elif self.cross_attention_3_norm_type in [ |
|
"ada_norm_zero", |
|
"layer_norm", |
|
"layer_norm_i2vgen", |
|
]: |
|
norm_hidden_states = self.norm2_3(hidden_states) |
|
elif self.cross_attention_3_norm_type == "ada_norm_single": |
|
|
|
|
|
norm_hidden_states = hidden_states |
|
elif self.cross_attention_3_norm_type == "ada_norm_continuous": |
|
norm_hidden_states = self.norm2_3( |
|
hidden_states, added_cond_kwargs["pooled_text_emb"] |
|
) |
|
else: |
|
raise ValueError("Incorrect norm") |
|
|
|
if ( |
|
self.pos_embed is not None |
|
and self.cross_attention_3_norm_type != "ada_norm_single" |
|
): |
|
norm_hidden_states = self.pos_embed(norm_hidden_states) |
|
|
|
attn_output_3 = self.attn2_3( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states_3, |
|
attention_mask=encoder_attention_mask_3, |
|
**cross_attention_kwargs, |
|
) |
|
hidden_states = attn_output_3 + hidden_states |
|
|
|
|
|
|
|
if self.self_attention_norm_type == "ada_norm_continuous": |
|
norm_hidden_states = self.norm3( |
|
hidden_states, added_cond_kwargs["pooled_text_emb"] |
|
) |
|
elif not self.self_attention_norm_type == "ada_norm_single": |
|
norm_hidden_states = self.norm3(hidden_states) |
|
|
|
if self.self_attention_norm_type == "ada_norm_zero": |
|
norm_hidden_states = ( |
|
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] |
|
) |
|
|
|
if self.self_attention_norm_type == "ada_norm_single": |
|
norm_hidden_states = self.norm2(hidden_states) |
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp |
|
|
|
if self._chunk_size is not None: |
|
|
|
ff_output = _chunked_feed_forward( |
|
self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size |
|
) |
|
else: |
|
ff_output = self.ff(norm_hidden_states) |
|
|
|
if self.self_attention_norm_type == "ada_norm_zero": |
|
ff_output = gate_mlp.unsqueeze(1) * ff_output |
|
elif self.self_attention_norm_type == "ada_norm_single": |
|
ff_output = gate_mlp * ff_output |
|
|
|
hidden_states = ff_output + hidden_states |
|
|
|
return hidden_states |
|
|
|
|
|
@maybe_allow_in_graph |
|
class FluxSingleTransformerBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
mlp_ratio: float = 4.0, |
|
): |
|
super().__init__() |
|
self.mlp_hidden_dim = int(dim * mlp_ratio) |
|
|
|
self.norm = AdaLayerNormZeroSingle(dim) |
|
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim) |
|
self.act_mlp = nn.GELU(approximate="tanh") |
|
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim) |
|
|
|
if is_torch_npu_available(): |
|
deprecation_message = ( |
|
"Defaulting to FluxAttnProcessor2_0_NPU for NPU devices will be removed. Attention processors " |
|
"should be set explicitly using the `set_attn_processor` method." |
|
) |
|
deprecate("npu_processor", "0.34.0", deprecation_message) |
|
processor = FluxAttnProcessor2_0_NPU() |
|
else: |
|
processor = FluxAttnProcessor2_0() |
|
|
|
self.attn = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=None, |
|
dim_head=attention_head_dim, |
|
heads=num_attention_heads, |
|
out_dim=dim, |
|
bias=True, |
|
processor=processor, |
|
qk_norm="rms_norm", |
|
eps=1e-6, |
|
pre_only=True, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
temb: torch.Tensor, |
|
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
) -> torch.Tensor: |
|
residual = hidden_states |
|
norm_hidden_states, gate = self.norm(hidden_states, emb=temb) |
|
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) |
|
joint_attention_kwargs = joint_attention_kwargs or {} |
|
attn_output = self.attn( |
|
hidden_states=norm_hidden_states, |
|
image_rotary_emb=image_rotary_emb, |
|
**joint_attention_kwargs, |
|
) |
|
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) |
|
gate = gate.unsqueeze(1) |
|
|
|
hidden_states = gate * self.proj_out(hidden_states) |
|
hidden_states = residual + hidden_states |
|
if hidden_states.dtype == torch.float16: |
|
hidden_states = hidden_states.clip(-65504, 65504) |
|
|
|
return hidden_states |
|
|
|
|
|
@maybe_allow_in_graph |
|
class FluxTransformerBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
qk_norm: str = "rms_norm", |
|
eps: float = 1e-6, |
|
): |
|
super().__init__() |
|
|
|
self.norm1 = AdaLayerNormZero(dim) |
|
self.norm1_context = AdaLayerNormZero(dim) |
|
|
|
self.attn = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=None, |
|
added_kv_proj_dim=dim, |
|
dim_head=attention_head_dim, |
|
heads=num_attention_heads, |
|
out_dim=dim, |
|
context_pre_only=False, |
|
bias=True, |
|
processor=FluxAttnProcessor2_0(), |
|
qk_norm=qk_norm, |
|
eps=eps, |
|
) |
|
|
|
mlp_ratio = 4.0 |
|
self.mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) |
|
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") |
|
|
|
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) |
|
self.ff_context = FeedForward( |
|
dim=dim, dim_out=dim, activation_fn="gelu-approximate" |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
temb: Optional[torch.Tensor] = None, |
|
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( |
|
hidden_states, emb=temb |
|
) |
|
|
|
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = ( |
|
self.norm1_context(encoder_hidden_states, emb=temb) |
|
) |
|
joint_attention_kwargs = joint_attention_kwargs or {} |
|
|
|
attention_outputs = self.attn( |
|
hidden_states=norm_hidden_states, |
|
encoder_hidden_states=norm_encoder_hidden_states, |
|
image_rotary_emb=image_rotary_emb, |
|
**joint_attention_kwargs, |
|
) |
|
|
|
if len(attention_outputs) == 2: |
|
attn_output, context_attn_output = attention_outputs |
|
elif len(attention_outputs) == 3: |
|
attn_output, context_attn_output, ip_attn_output = attention_outputs |
|
|
|
|
|
attn_output = gate_msa.unsqueeze(1) * attn_output |
|
hidden_states = hidden_states + attn_output |
|
|
|
norm_hidden_states = self.norm2(hidden_states) |
|
norm_hidden_states = ( |
|
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] |
|
) |
|
|
|
ff_output = self.ff(norm_hidden_states) |
|
ff_output = gate_mlp.unsqueeze(1) * ff_output |
|
|
|
hidden_states = hidden_states + ff_output |
|
if len(attention_outputs) == 3: |
|
hidden_states = hidden_states + ip_attn_output |
|
|
|
|
|
|
|
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output |
|
encoder_hidden_states = encoder_hidden_states + context_attn_output |
|
|
|
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) |
|
norm_encoder_hidden_states = ( |
|
norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) |
|
+ c_shift_mlp[:, None] |
|
) |
|
|
|
context_ff_output = self.ff_context(norm_encoder_hidden_states) |
|
encoder_hidden_states = ( |
|
encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output |
|
) |
|
if encoder_hidden_states.dtype == torch.float16: |
|
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) |
|
|
|
return encoder_hidden_states, hidden_states |
|
|