ReubenSun's picture
1
2ac1c2d
raw
history blame
14 kB
import math
import os
import json
import re
import cv2
from dataclasses import dataclass, field
import random
import imageio
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset
from PIL import Image
from step1x3d_geometry.utils.typing import *
@dataclass
class BaseDataModuleConfig:
root_dir: str = None
batch_size: int = 4
num_workers: int = 8
################################# General argumentation #################################
random_flip: bool = (
False # whether to randomly flip the input point cloud and the input images
)
################################# Geometry part #################################
load_geometry: bool = True # whether to load geometry data
with_sharp_data: bool = False
geo_data_type: str = "sdf" # occupancy, sdf
# for occupancy or sdf supervision
n_samples: int = 4096 # number of points in input point cloud
upsample_ratio: int = 1 # upsample ratio for input point cloud
sampling_strategy: Optional[str] = (
"random" # sampling strategy for input point cloud
)
scale: float = 1.0 # scale of the input point cloud and target supervision
noise_sigma: float = 0.0 # noise level of the input point cloud
rotate_points: bool = (
False # whether to rotate the input point cloud and the supervision, for VAE aug.
)
load_geometry_supervision: bool = False # whether to load supervision
supervision_type: str = "sdf" # occupancy, sdf, tsdf, tsdf_w_surface
n_supervision: int = 10000 # number of points in supervision
tsdf_threshold: float = (
0.01 # threshold for truncating sdf values, used when input is sdf
)
################################# Image part #################################
load_image: bool = False # whether to load images
image_type: str = "rgb" # rgb, normal, rgb_or_normal
image_file_type: str = "png" # png, jpeg
image_type_ratio: float = (
1.0 # ratio of rgb for each dataset when image_type is "rgb_or_normal"
)
crop_image: bool = True # whether to crop the input image
random_color_jitter: bool = (
False # whether to randomly color jitter the input images
)
random_rotate: bool = (
False # whether to randomly rotate the input images, default [-10 deg, 10 deg]
)
random_mask: bool = False # whether to add random mask to the input image
background_color: Tuple[int, int, int] = field(
default_factory=lambda: (255, 255, 255)
)
idx: Optional[List[int]] = None # index of the image to load
n_views: int = 1 # number of views
foreground_ratio: Optional[float] = 0.90
################################# Caption part #################################
load_caption: bool = False # whether to load captions
load_label: bool = False # whether to load labels
class BaseDataset(Dataset):
def __init__(self, cfg: Any, split: str) -> None:
super().__init__()
self.cfg: BaseDataModuleConfig = cfg
self.split = split
self.uids = json.load(open(f"{cfg.root_dir}/{split}.json"))
print(f"Loaded {len(self.uids)} {split} uids")
# add ColorJitter transforms for input images
if self.cfg.random_color_jitter:
self.color_jitter = transforms.ColorJitter(
brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2
)
# add RandomRotation transforms for input images
if self.cfg.random_rotate:
self.rotate = transforms.RandomRotation(
degrees=10, fill=(*self.cfg.background_color, 0.0)
) # by default 10 deg
def __len__(self):
return len(self.uids)
def _load_shape_from_occupancy_or_sdf(self, index: int) -> Dict[str, Any]:
if self.cfg.geo_data_type == "sdf":
data = np.load(f"{self.cfg.root_dir}/surfaces/{self.uids[index]}.npz")
# for input point cloud
surface = data["surface"]
if self.cfg.with_sharp_data:
sharp_surface = data["sharp_surface"]
else:
raise NotImplementedError(
f"Data type {self.cfg.geo_data_type} not implemented"
)
# random sampling
if self.cfg.sampling_strategy == "random":
rng = np.random.default_rng()
ind = rng.choice(
surface.shape[0],
self.cfg.upsample_ratio * self.cfg.n_samples,
replace=True,
)
surface = surface[ind]
if self.cfg.with_sharp_data:
sharp_surface = sharp_surface[ind]
elif self.cfg.sampling_strategy == "fps":
import fpsample
kdline_fps_samples_idx = fpsample.bucket_fps_kdline_sampling(
surface[:, :3], self.cfg.n_samples, h=5
)
surface = surface[kdline_fps_samples_idx]
if self.cfg.with_sharp_data:
kdline_fps_samples_idx = fpsample.bucket_fps_kdline_sampling(
sharp_surface[:, :3], self.cfg.n_samples, h=5
)
sharp_surface = sharp_surface[kdline_fps_samples_idx]
else:
raise NotImplementedError(
f"sampling strategy {self.cfg.sampling_strategy} not implemented"
)
# rescale data
surface[:, :3] = surface[:, :3] * self.cfg.scale # target scale
if self.cfg.with_sharp_data:
sharp_surface[:, :3] = sharp_surface[:, :3] * self.cfg.scale # target scale
ret = {
"uid": self.uids[index].split("/")[-1],
"surface": surface.astype(np.float32),
"sharp_surface": sharp_surface.astype(np.float32),
}
else:
ret = {
"uid": self.uids[index].split("/")[-1],
"surface": surface.astype(np.float32),
}
return ret
def _load_shape_supervision_occupancy_or_sdf(self, index: int) -> Dict[str, Any]:
# for supervision
ret = {}
if self.cfg.geo_data_type == "sdf":
data = np.load(f"{self.cfg.root_dir}/surfaces/{self.uids[index]}.npz")
data = np.concatenate(
[data["volume_rand_points"], data["near_surface_points"]], axis=0
)
rand_points, sdfs = data[:, :3], data[:, 3:]
else:
raise NotImplementedError(
f"Data type {self.cfg.geo_data_type} not implemented"
)
# random sampling
rng = np.random.default_rng()
ind = rng.choice(rand_points.shape[0], self.cfg.n_supervision, replace=False)
rand_points = rand_points[ind]
rand_points = rand_points * self.cfg.scale
ret["rand_points"] = rand_points.astype(np.float32)
if self.cfg.geo_data_type == "sdf":
if self.cfg.supervision_type == "sdf":
ret["sdf"] = sdfs[ind].flatten().astype(np.float32)
elif self.cfg.supervision_type == "occupancy":
ret["occupancies"] = np.where(sdfs[ind].flatten() < 1e-3, 0, 1).astype(
np.float32
)
elif self.cfg.supervision_type == "tsdf":
ret["sdf"] = (
sdfs[ind]
.flatten()
.astype(np.float32)
.clip(-self.cfg.tsdf_threshold, self.cfg.tsdf_threshold)
/ self.cfg.tsdf_threshold
)
else:
raise NotImplementedError(
f"Supervision type {self.cfg.supervision_type} not implemented"
)
return ret
def _load_image(self, index: int) -> Dict[str, Any]:
def _process_img(image, background_color=(255, 255, 255), foreground_ratio=0.9):
alpha = image.getchannel("A")
background = Image.new("RGBA", image.size, (*background_color, 255))
image = Image.alpha_composite(background, image)
image = image.crop(alpha.getbbox())
new_size = tuple(int(dim * foreground_ratio) for dim in image.size)
resized_image = image.resize(new_size)
padded_image = Image.new("RGBA", image.size, (*background_color, 255))
paste_position = (
(image.width - resized_image.width) // 2,
(image.height - resized_image.height) // 2,
)
padded_image.paste(resized_image, paste_position)
# Expand image to 1:1
max_dim = max(padded_image.size)
image = Image.new("RGBA", (max_dim, max_dim), (*background_color, 255))
paste_position = (
(max_dim - padded_image.width) // 2,
(max_dim - padded_image.height) // 2,
)
image.paste(padded_image, paste_position)
image = image.resize((512, 512))
return image.convert("RGB"), alpha
ret = {}
if self.cfg.image_type == "rgb" or self.cfg.image_type == "normal":
assert (
self.cfg.n_views == 1
), "Only single view is supported for single image"
sel_idx = random.choice(self.cfg.idx)
ret["sel_image_idx"] = sel_idx
if self.cfg.image_type == "rgb":
img_path = (
f"{self.cfg.root_dir}/images/"
+ "/".join(self.uids[index].split("/")[-2:])
+ f"/{'{:04d}'.format(sel_idx)}_rgb.{self.cfg.image_file_type}"
)
elif self.cfg.image_type == "normal":
img_path = (
f"{self.cfg.root_dir}/images/"
+ "/".join(self.uids[index].split("/")[-2:])
+ f"/{'{:04d}'.format(sel_idx)}_normal.{self.cfg.image_file_type}"
)
image = Image.open(img_path).copy()
# add random color jitter
if self.cfg.random_color_jitter:
rgb = self.color_jitter(image.convert("RGB"))
image = Image.merge("RGBA", (*rgb.split(), image.getchannel("A")))
# add random rotation
if self.cfg.random_rotate:
image = self.rotate(image)
# add crop
if self.cfg.crop_image:
background_color = (
torch.randint(0, 256, (3,))
if self.cfg.background_color is None
else torch.as_tensor(self.cfg.background_color)
)
image, alpha = _process_img(
image, background_color, self.cfg.foreground_ratio
)
else:
alpha = image.getchannel("A")
background = Image.new("RGBA", image.size, background_color)
image = Image.alpha_composite(background, image).convert("RGB")
ret["image"] = torch.from_numpy(np.array(image) / 255.0)
ret["mask"] = torch.from_numpy(np.array(alpha) / 255.0).unsqueeze(0)
else:
raise NotImplementedError(
f"Image type {self.cfg.image_type} not implemented"
)
return ret
def _get_data(self, index):
ret = {"uid": self.uids[index]}
# random flip
flip = np.random.rand() < 0.5 if self.cfg.random_flip else False
# load geometry
if self.cfg.load_geometry:
if self.cfg.geo_data_type == "occupancy" or self.cfg.geo_data_type == "sdf":
# load shape
ret = self._load_shape_from_occupancy_or_sdf(index)
# load supervision for shape
if self.cfg.load_geometry_supervision:
ret.update(self._load_shape_supervision_occupancy_or_sdf(index))
else:
raise NotImplementedError(
f"Geo data type {self.cfg.geo_data_type} not implemented"
)
if flip: # random flip the input point cloud and the supervision
for key in ret.keys():
if key in ["surface", "sharp_surface"]: # N x (xyz + normal)
ret[key][:, 0] = -ret[key][:, 0]
ret[key][:, 3] = -ret[key][:, 3]
elif key in ["rand_points"]:
ret[key][:, 0] = -ret[key][:, 0]
# load image
if self.cfg.load_image:
ret.update(self._load_image(index))
if flip: # random flip the input image
for key in ret.keys():
if key in ["image"]: # random flip the input image
ret[key] = torch.flip(ret[key], [2])
if key in ["mask"]: # random flip the input image
ret[key] = torch.flip(ret[key], [2])
# load caption
meta = None
if self.cfg.load_caption:
with open(f"{self.cfg.root_dir}/metas/{self.uids[index]}.json", "r") as f:
meta = json.load(f)
ret.update({"caption": meta["caption"]})
# load label
if self.cfg.load_label:
if meta is None:
with open(
f"{self.cfg.root_dir}/metas/{self.uids[index]}.json", "r"
) as f:
meta = json.load(f)
ret.update({"label": [meta["label"]]})
return ret
def __getitem__(self, index):
try:
return self._get_data(index)
except Exception as e:
print(f"Error in {self.uids[index]}: {e}")
return self.__getitem__(np.random.randint(len(self)))
def collate(self, batch):
from torch.utils.data._utils.collate import default_collate_fn_map
return torch.utils.data.default_collate(batch)