Spaces:
Running
on
Zero
Running
on
Zero
Update README.md
Browse files
README.md
CHANGED
@@ -1,14 +1,25 @@
|
|
1 |
---
|
2 |
-
title: Qwen2.5 1.5B Instruct Gkd Demo
|
3 |
-
emoji: 📊
|
4 |
-
colorFrom: yellow
|
5 |
-
colorTo: red
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 5.34.2
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: mit
|
11 |
-
short_description: Qwen2.5-1.5B-Instruct-gkd-demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
---
|
13 |
|
14 |
## ✅ What’s Fixed & Improved
|
@@ -22,243 +33,4 @@ short_description: Qwen2.5-1.5B-Instruct-gkd-demo
|
|
22 |
| ⚙️ **Model Loading Optimization** | Moved model loading into the first request (Hugging Face Spaces friendly) |
|
23 |
| 🧼 **Code Cleanliness** | Better structure, comments, and readability |
|
24 |
|
25 |
-
---
|
26 |
-
|
27 |
-
## 📦 Final Version of `app.py`
|
28 |
-
|
29 |
-
Here is your updated file:
|
30 |
-
|
31 |
-
```python
|
32 |
-
import gradio as gr
|
33 |
-
import torch
|
34 |
-
from transformers import (
|
35 |
-
AutoTokenizer,
|
36 |
-
AutoModelForCausalLM,
|
37 |
-
SpeechT5Processor,
|
38 |
-
SpeechT5ForTextToSpeech,
|
39 |
-
SpeechT5HifiGan,
|
40 |
-
WhisperProcessor,
|
41 |
-
WhisperForConditionalGeneration
|
42 |
-
)
|
43 |
-
from datasets import load_dataset
|
44 |
-
import os
|
45 |
-
import spaces
|
46 |
-
import tempfile
|
47 |
-
import soundfile as sf
|
48 |
-
import librosa
|
49 |
-
|
50 |
-
# --- Configuration ---
|
51 |
-
HUGGINGFACE_MODEL_ID = "HuggingFaceH4/Qwen2.5-1.5B-Instruct-gkd"
|
52 |
-
TORCH_DTYPE = torch.bfloat16
|
53 |
-
MAX_NEW_TOKENS = 512
|
54 |
-
DO_SAMPLE = True
|
55 |
-
TEMPERATURE = 0.7
|
56 |
-
TOP_K = 50
|
57 |
-
TOP_P = 0.95
|
58 |
-
|
59 |
-
TTS_MODEL_ID = "microsoft/speecht5_tts"
|
60 |
-
TTS_VOCODER_ID = "microsoft/speecht5_hifigan"
|
61 |
-
STT_MODEL_ID = "openai/whisper-small"
|
62 |
-
|
63 |
-
# --- Global Variables ---
|
64 |
-
tokenizer = None
|
65 |
-
llm_model = None
|
66 |
-
tts_processor = None
|
67 |
-
tts_model = None
|
68 |
-
tts_vocoder = None
|
69 |
-
speaker_embeddings = None
|
70 |
-
whisper_processor = None
|
71 |
-
whisper_model = None
|
72 |
-
first_load = True
|
73 |
-
|
74 |
-
# --- Helper: Split Text Into Chunks ---
|
75 |
-
def split_text_into_chunks(text, max_chars=400):
|
76 |
-
sentences = text.replace("...", ".").split(". ")
|
77 |
-
chunks = []
|
78 |
-
current_chunk = ""
|
79 |
-
for sentence in sentences:
|
80 |
-
if len(current_chunk) + len(sentence) + 2 < max_chars:
|
81 |
-
current_chunk += ". " + sentence if current_chunk else sentence
|
82 |
-
else:
|
83 |
-
chunks.append(current_chunk)
|
84 |
-
current_chunk = sentence
|
85 |
-
if current_chunk:
|
86 |
-
chunks.append(current_chunk)
|
87 |
-
return [f"{chunk}." for chunk in chunks if chunk.strip()]
|
88 |
-
|
89 |
-
# --- Load Models Function ---
|
90 |
-
@spaces.GPU
|
91 |
-
def load_models():
|
92 |
-
global tokenizer, llm_model, tts_processor, tts_model, tts_vocoder, speaker_embeddings, whisper_processor, whisper_model
|
93 |
-
hf_token = os.environ.get("HF_TOKEN")
|
94 |
-
|
95 |
-
# LLM
|
96 |
-
if tokenizer is None or llm_model is None:
|
97 |
-
try:
|
98 |
-
tokenizer = AutoTokenizer.from_pretrained(HUGGINGFACE_MODEL_ID, token=hf_token)
|
99 |
-
if tokenizer.pad_token is None:
|
100 |
-
tokenizer.pad_token = tokenizer.eos_token
|
101 |
-
llm_model = AutoModelForCausalLM.from_pretrained(
|
102 |
-
HUGGINGFACE_MODEL_ID,
|
103 |
-
torch_dtype=TORCH_DTYPE,
|
104 |
-
device_map="auto",
|
105 |
-
token=hf_token
|
106 |
-
).eval()
|
107 |
-
print("LLM loaded successfully.")
|
108 |
-
except Exception as e:
|
109 |
-
print(f"Error loading LLM: {e}")
|
110 |
-
|
111 |
-
# TTS
|
112 |
-
if tts_processor is None or tts_model is None or tts_vocoder is None:
|
113 |
-
try:
|
114 |
-
tts_processor = SpeechT5Processor.from_pretrained(TTS_MODEL_ID, token=hf_token)
|
115 |
-
tts_model = SpeechT5ForTextToSpeech.from_pretrained(TTS_MODEL_ID, token=hf_token)
|
116 |
-
tts_vocoder = SpeechT5HifiGan.from_pretrained(TTS_VOCODER_ID, token=hf_token)
|
117 |
-
embeddings = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation", token=hf_token)
|
118 |
-
speaker_embeddings = torch.tensor(embeddings[7306]["xvector"]).unsqueeze(0)
|
119 |
-
device = llm_model.device if llm_model else 'cpu'
|
120 |
-
tts_model.to(device)
|
121 |
-
tts_vocoder.to(device)
|
122 |
-
speaker_embeddings = speaker_embeddings.to(device)
|
123 |
-
print("TTS models loaded.")
|
124 |
-
except Exception as e:
|
125 |
-
print(f"Error loading TTS: {e}")
|
126 |
-
|
127 |
-
# STT
|
128 |
-
if whisper_processor is None or whisper_model is None:
|
129 |
-
try:
|
130 |
-
whisper_processor = WhisperProcessor.from_pretrained(STT_MODEL_ID, token=hf_token)
|
131 |
-
whisper_model = WhisperForConditionalGeneration.from_pretrained(STT_MODEL_ID, token=hf_token)
|
132 |
-
device = llm_model.device if llm_model else 'cpu'
|
133 |
-
whisper_model.to(device)
|
134 |
-
print("Whisper loaded.")
|
135 |
-
except Exception as e:
|
136 |
-
print(f"Error loading Whisper: {e}")
|
137 |
-
|
138 |
-
# --- Generate Response and Audio ---
|
139 |
-
@spaces.GPU
|
140 |
-
def generate_response_and_audio(message, history):
|
141 |
-
global first_load
|
142 |
-
if first_load:
|
143 |
-
load_models()
|
144 |
-
first_load = False
|
145 |
-
|
146 |
-
global tokenizer, llm_model, tts_processor, tts_model, tts_vocoder, speaker_embeddings
|
147 |
-
|
148 |
-
if tokenizer is None or llm_model is None:
|
149 |
-
return [{"role": "assistant", "content": "Error: LLM not loaded."}], None
|
150 |
-
|
151 |
-
messages = history.copy()
|
152 |
-
messages.append({"role": "user", "content": message})
|
153 |
-
|
154 |
-
try:
|
155 |
-
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
156 |
-
except:
|
157 |
-
input_text = ""
|
158 |
-
for item in history:
|
159 |
-
input_text += f"{item['role'].capitalize()}: {item['content']}\n"
|
160 |
-
input_text += f"User: {message}\nAssistant:"
|
161 |
-
|
162 |
-
try:
|
163 |
-
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True).to(llm_model.device)
|
164 |
-
output_ids = llm_model.generate(
|
165 |
-
inputs["input_ids"],
|
166 |
-
attention_mask=inputs["attention_mask"],
|
167 |
-
max_new_tokens=MAX_NEW_TOKENS,
|
168 |
-
do_sample=DO_SAMPLE,
|
169 |
-
temperature=TEMPERATURE,
|
170 |
-
top_k=TOP_K,
|
171 |
-
top_p=TOP_P,
|
172 |
-
pad_token_id=tokenizer.eos_token_id
|
173 |
-
)
|
174 |
-
generated_text = tokenizer.decode(output_ids[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True).strip()
|
175 |
-
except Exception as e:
|
176 |
-
print(f"LLM error: {e}")
|
177 |
-
return history + [{"role": "assistant", "content": "I had an issue generating a response."}], None
|
178 |
-
|
179 |
-
audio_path = None
|
180 |
-
if None not in [tts_processor, tts_model, tts_vocoder, speaker_embeddings]:
|
181 |
-
try:
|
182 |
-
device = llm_model.device
|
183 |
-
text_chunks = split_text_into_chunks(generated_text)
|
184 |
-
|
185 |
-
full_speech = []
|
186 |
-
for chunk in text_chunks:
|
187 |
-
tts_inputs = tts_processor(text=chunk, return_tensors="pt", max_length=512, truncation=True).to(device)
|
188 |
-
speech = tts_model.generate_speech(tts_inputs["input_ids"], speaker_embeddings, vocoder=tts_vocoder)
|
189 |
-
full_speech.append(speech.cpu())
|
190 |
-
|
191 |
-
full_speech_tensor = torch.cat(full_speech, dim=0)
|
192 |
-
|
193 |
-
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
|
194 |
-
audio_path = tmp_file.name
|
195 |
-
sf.write(audio_path, full_speech_tensor.numpy(), samplerate=16000)
|
196 |
-
|
197 |
-
except Exception as e:
|
198 |
-
print(f"TTS error: {e}")
|
199 |
-
|
200 |
-
return history + [{"role": "assistant", "content": generated_text}], audio_path
|
201 |
-
|
202 |
-
# --- Transcribe Audio ---
|
203 |
-
@spaces.GPU
|
204 |
-
def transcribe_audio(filepath):
|
205 |
-
global first_load
|
206 |
-
if first_load:
|
207 |
-
load_models()
|
208 |
-
first_load = False
|
209 |
-
|
210 |
-
global whisper_processor, whisper_model
|
211 |
-
if whisper_model is None:
|
212 |
-
return "Whisper model not loaded."
|
213 |
-
|
214 |
-
try:
|
215 |
-
audio, sr = librosa.load(filepath, sr=16000)
|
216 |
-
inputs = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.to(whisper_model.device)
|
217 |
-
outputs = whisper_model.generate(inputs)
|
218 |
-
return whisper_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
219 |
-
except Exception as e:
|
220 |
-
return f"Transcription failed: {e}"
|
221 |
-
|
222 |
-
# --- Gradio UI ---
|
223 |
-
with gr.Blocks() as demo:
|
224 |
-
gr.Markdown("# Qwen2.5 Chatbot with Voice Input/Output")
|
225 |
-
|
226 |
-
with gr.Tab("Chat"):
|
227 |
-
chatbot = gr.Chatbot(type='messages')
|
228 |
-
text_input = gr.Textbox(placeholder="Type your message...")
|
229 |
-
audio_output = gr.Audio(label="Response Audio", autoplay=True)
|
230 |
-
text_input.submit(generate_response_and_audio, [text_input, chatbot], [chatbot, audio_output])
|
231 |
-
|
232 |
-
with gr.Tab("Transcribe"):
|
233 |
-
audio_input = gr.Audio(type="filepath", label="Upload Audio")
|
234 |
-
transcribed = gr.Textbox(label="Transcription")
|
235 |
-
audio_input.upload(transcribe_audio, audio_input, transcribed)
|
236 |
-
|
237 |
-
clear_btn = gr.Button("Clear All")
|
238 |
-
clear_btn.click(lambda: ([], "", None), None, [chatbot, text_input, audio_output])
|
239 |
-
|
240 |
-
demo.queue().launch()
|
241 |
-
```
|
242 |
-
|
243 |
-
---
|
244 |
-
|
245 |
-
## ✅ Instructions for Uploading to Hugging Face Spaces
|
246 |
-
|
247 |
-
1. **Go to your Space**: https://huggingface.co/spaces/ajsbsd/Qwen2.5-1.5B-Instruct-gkd-demo
|
248 |
-
2. **Pause the CI**: Go to `Settings > Runtime`, and switch from "Always On" to "Manual"
|
249 |
-
3. **Delete old app.py**
|
250 |
-
4. **Upload this new file** as `app.py`
|
251 |
-
5. **Start the CI again**
|
252 |
-
|
253 |
-
---
|
254 |
-
|
255 |
-
## 🧩 Optional Enhancements
|
256 |
-
|
257 |
-
Would you like me to help you with any of the following?
|
258 |
-
|
259 |
-
- Add **status indicators** during model loading or generation
|
260 |
-
- Allow **microphone input** directly in chat tab
|
261 |
-
- Use `gr.State()` to store chat history more efficiently
|
262 |
-
- Package models into a custom repo for faster load times
|
263 |
-
|
264 |
-
Just let me know what you'd like next!Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Qwen2.5 1.5B Instruct Gkd Demo
|
3 |
+
emoji: 📊
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: red
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.34.2
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
short_description: Qwen2.5-1.5B-Instruct-gkd-demo
|
12 |
+
---
|
13 |
+
|
14 |
+
# Qwen2.5 1.5B Instruct Gkd Demo
|
15 |
+
|
16 |
+
A voice-enabled chatbot powered by:
|
17 |
+
- `Qwen2.5-1.5B-Instruct-gkd` for language generation
|
18 |
+
- `SpeechT5` for text-to-speech
|
19 |
+
- `Whisper-small` for speech-to-text
|
20 |
+
|
21 |
+
Try chatting, listen to the audio response, or upload an audio file for transcription.
|
22 |
+
|
23 |
---
|
24 |
|
25 |
## ✅ What’s Fixed & Improved
|
|
|
33 |
| ⚙️ **Model Loading Optimization** | Moved model loading into the first request (Hugging Face Spaces friendly) |
|
34 |
| 🧼 **Code Cleanliness** | Better structure, comments, and readability |
|
35 |
|
36 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|