Spaces:
Running
on
Zero
Running
on
Zero
Delete app.py
Browse files
app.py
DELETED
@@ -1,187 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
from transformers import (
|
4 |
-
AutoTokenizer,
|
5 |
-
AutoModelForCausalLM,
|
6 |
-
SpeechT5Processor,
|
7 |
-
SpeechT5ForTextToSpeech,
|
8 |
-
SpeechT5HifiGan,
|
9 |
-
WhisperProcessor,
|
10 |
-
WhisperForConditionalGeneration
|
11 |
-
)
|
12 |
-
from datasets import load_dataset
|
13 |
-
import os
|
14 |
-
import spaces
|
15 |
-
import tempfile
|
16 |
-
import soundfile as sf
|
17 |
-
import librosa
|
18 |
-
|
19 |
-
# --- Configuration ---
|
20 |
-
HUGGINGFACE_MODEL_ID = "HuggingFaceH4/Qwen2.5-1.5B-Instruct-gkd"
|
21 |
-
TORCH_DTYPE = torch.bfloat16
|
22 |
-
MAX_NEW_TOKENS = 512
|
23 |
-
DO_SAMPLE = True
|
24 |
-
TEMPERATURE = 0.7
|
25 |
-
TOP_K = 50
|
26 |
-
TOP_P = 0.95
|
27 |
-
|
28 |
-
TTS_MODEL_ID = "microsoft/speecht5_tts"
|
29 |
-
TTS_VOCODER_ID = "microsoft/speecht5_hifigan"
|
30 |
-
STT_MODEL_ID = "openai/whisper-small"
|
31 |
-
|
32 |
-
# --- Global Variables ---
|
33 |
-
tokenizer = None
|
34 |
-
llm_model = None
|
35 |
-
tts_processor = None
|
36 |
-
tts_model = None
|
37 |
-
tts_vocoder = None
|
38 |
-
speaker_embeddings = None
|
39 |
-
whisper_processor = None
|
40 |
-
whisper_model = None
|
41 |
-
first_load = True
|
42 |
-
|
43 |
-
# --- Load Models Function ---
|
44 |
-
@spaces.GPU
|
45 |
-
def load_models():
|
46 |
-
global tokenizer, llm_model, tts_processor, tts_model, tts_vocoder, speaker_embeddings
|
47 |
-
global whisper_processor, whisper_model
|
48 |
-
|
49 |
-
if (tokenizer is not None and llm_model is not None and tts_model is not None and
|
50 |
-
whisper_model is not None):
|
51 |
-
print("All models already loaded.")
|
52 |
-
return
|
53 |
-
|
54 |
-
hf_token = os.environ.get("HF_TOKEN")
|
55 |
-
|
56 |
-
# LLM
|
57 |
-
try:
|
58 |
-
tokenizer = AutoTokenizer.from_pretrained(HUGGINGFACE_MODEL_ID, token=hf_token)
|
59 |
-
if tokenizer.pad_token is None:
|
60 |
-
tokenizer.pad_token = tokenizer.eos_token
|
61 |
-
llm_model = AutoModelForCausalLM.from_pretrained(
|
62 |
-
HUGGINGFACE_MODEL_ID,
|
63 |
-
torch_dtype=TORCH_DTYPE,
|
64 |
-
device_map="auto",
|
65 |
-
token=hf_token
|
66 |
-
).eval()
|
67 |
-
print("LLM loaded successfully.")
|
68 |
-
except Exception as e:
|
69 |
-
print(f"Error loading LLM: {e}")
|
70 |
-
|
71 |
-
# TTS
|
72 |
-
try:
|
73 |
-
tts_processor = SpeechT5Processor.from_pretrained(TTS_MODEL_ID, token=hf_token)
|
74 |
-
tts_model = SpeechT5ForTextToSpeech.from_pretrained(TTS_MODEL_ID, token=hf_token)
|
75 |
-
tts_vocoder = SpeechT5HifiGan.from_pretrained(TTS_VOCODER_ID, token=hf_token)
|
76 |
-
embeddings = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation", token=hf_token)
|
77 |
-
speaker_embeddings = torch.tensor(embeddings[7306]["xvector"]).unsqueeze(0)
|
78 |
-
device = llm_model.device if llm_model else 'cpu'
|
79 |
-
tts_model.to(device)
|
80 |
-
tts_vocoder.to(device)
|
81 |
-
speaker_embeddings = speaker_embeddings.to(device)
|
82 |
-
print("TTS models loaded.")
|
83 |
-
except Exception as e:
|
84 |
-
print(f"Error loading TTS: {e}")
|
85 |
-
|
86 |
-
# STT
|
87 |
-
try:
|
88 |
-
whisper_processor = WhisperProcessor.from_pretrained(STT_MODEL_ID, token=hf_token)
|
89 |
-
whisper_model = WhisperForConditionalGeneration.from_pretrained(STT_MODEL_ID, token=hf_token)
|
90 |
-
whisper_model.to(llm_model.device if llm_model else 'cpu')
|
91 |
-
print("Whisper loaded.")
|
92 |
-
except Exception as e:
|
93 |
-
print(f"Error loading Whisper: {e}")
|
94 |
-
|
95 |
-
# --- Generate Response + Audio ---
|
96 |
-
@spaces.GPU
|
97 |
-
def generate_response_and_audio(message, history):
|
98 |
-
global first_load
|
99 |
-
if first_load:
|
100 |
-
load_models()
|
101 |
-
first_load = False
|
102 |
-
|
103 |
-
global tokenizer, llm_model, tts_processor, tts_model, tts_vocoder, speaker_embeddings
|
104 |
-
|
105 |
-
if tokenizer is None or llm_model is None:
|
106 |
-
return [{"role": "assistant", "content": "Error: LLM not loaded."}], None
|
107 |
-
|
108 |
-
messages = history.copy()
|
109 |
-
messages.append({"role": "user", "content": message})
|
110 |
-
|
111 |
-
try:
|
112 |
-
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
113 |
-
except:
|
114 |
-
input_text = ""
|
115 |
-
for item in history:
|
116 |
-
input_text += f"{item['role'].capitalize()}: {item['content']}\n"
|
117 |
-
input_text += f"User: {message}\nAssistant:"
|
118 |
-
|
119 |
-
try:
|
120 |
-
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True).to(llm_model.device)
|
121 |
-
output_ids = llm_model.generate(
|
122 |
-
inputs["input_ids"],
|
123 |
-
attention_mask=inputs["attention_mask"],
|
124 |
-
max_new_tokens=MAX_NEW_TOKENS,
|
125 |
-
do_sample=DO_SAMPLE,
|
126 |
-
temperature=TEMPERATURE,
|
127 |
-
top_k=TOP_K,
|
128 |
-
top_p=TOP_P,
|
129 |
-
pad_token_id=tokenizer.eos_token_id
|
130 |
-
)
|
131 |
-
generated_text = tokenizer.decode(output_ids[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True).strip()
|
132 |
-
except Exception as e:
|
133 |
-
print(f"LLM error: {e}")
|
134 |
-
return history + [{"role": "assistant", "content": "I had an issue generating a response."}], None
|
135 |
-
|
136 |
-
audio_path = None
|
137 |
-
if None not in [tts_processor, tts_model, tts_vocoder, speaker_embeddings]:
|
138 |
-
try:
|
139 |
-
tts_inputs = tts_processor(text=generated_text, return_tensors="pt", max_length=550, truncation=True).to(llm_model.device)
|
140 |
-
speech = tts_model.generate_speech(tts_inputs["input_ids"], speaker_embeddings, vocoder=tts_vocoder)
|
141 |
-
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
|
142 |
-
audio_path = tmp_file.name
|
143 |
-
sf.write(audio_path, speech.cpu().numpy(), samplerate=16000)
|
144 |
-
except Exception as e:
|
145 |
-
print(f"TTS error: {e}")
|
146 |
-
|
147 |
-
return history + [{"role": "assistant", "content": generated_text}], audio_path
|
148 |
-
|
149 |
-
# --- Transcribe Audio ---
|
150 |
-
@spaces.GPU
|
151 |
-
def transcribe_audio(filepath):
|
152 |
-
global first_load
|
153 |
-
if first_load:
|
154 |
-
load_models()
|
155 |
-
first_load = False
|
156 |
-
|
157 |
-
global whisper_processor, whisper_model
|
158 |
-
if whisper_model is None:
|
159 |
-
return "Whisper model not loaded."
|
160 |
-
|
161 |
-
try:
|
162 |
-
audio, sr = librosa.load(filepath, sr=16000)
|
163 |
-
inputs = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.to(whisper_model.device)
|
164 |
-
outputs = whisper_model.generate(inputs)
|
165 |
-
return whisper_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
166 |
-
except Exception as e:
|
167 |
-
return f"Transcription failed: {e}"
|
168 |
-
|
169 |
-
# --- Gradio UI ---
|
170 |
-
with gr.Blocks() as demo:
|
171 |
-
gr.Markdown("# Qwen2.5 Chatbot with Voice Input/Output")
|
172 |
-
|
173 |
-
with gr.Tab("Chat"):
|
174 |
-
chatbot = gr.Chatbot(type='messages')
|
175 |
-
text_input = gr.Textbox(placeholder="Type your message...")
|
176 |
-
audio_output = gr.Audio(label="Response Audio", autoplay=True)
|
177 |
-
text_input.submit(generate_response_and_audio, [text_input, chatbot], [chatbot, audio_output])
|
178 |
-
|
179 |
-
with gr.Tab("Transcribe"):
|
180 |
-
audio_input = gr.Audio(type="filepath", label="Upload Audio")
|
181 |
-
transcribed = gr.Textbox(label="Transcription")
|
182 |
-
audio_input.upload(transcribe_audio, audio_input, transcribed)
|
183 |
-
|
184 |
-
clear_btn = gr.Button("Clear All")
|
185 |
-
clear_btn.click(lambda: ([], "", None), None, [chatbot, text_input, audio_output])
|
186 |
-
|
187 |
-
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|