ajsbsd commited on
Commit
6258728
·
verified ·
1 Parent(s): a2619b7

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +279 -0
app.py ADDED
@@ -0,0 +1,279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import (
4
+ AutoTokenizer, AutoModelForCausalLM,
5
+ SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan,
6
+ WhisperProcessor, WhisperForConditionalGeneration
7
+ )
8
+ from datasets import load_dataset
9
+ import os
10
+ import spaces
11
+ import tempfile
12
+ import soundfile as sf
13
+ import librosa
14
+ import yaml
15
+
16
+ # ================== Configuration ==================
17
+ HUGGINGFACE_MODEL_ID = "HuggingFaceH4/Qwen2.5-1.5B-Instruct-gkd"
18
+ TORCH_DTYPE = torch.bfloat16
19
+ MAX_NEW_TOKENS = 512
20
+ DO_SAMPLE = True
21
+ TEMPERATURE = 0.7
22
+ TOP_K = 50
23
+ TOP_P = 0.95
24
+
25
+ TTS_MODEL_ID = "microsoft/speecht5_tts"
26
+ TTS_VOCODER_ID = "microsoft/speecht5_hifigan"
27
+ STT_MODEL_ID = "openai/whisper-small"
28
+
29
+ # ================== Global Variables ==================
30
+ tokenizer = None
31
+ llm_model = None
32
+ tts_processor = None
33
+ tts_model = None
34
+ tts_vocoder = None
35
+ speaker_embeddings = None
36
+ whisper_processor = None
37
+ whisper_model = None
38
+ first_load = True
39
+
40
+ # ================== UI Helpers ==================
41
+ def generate_pretty_html(data):
42
+ html = """
43
+ <div style="font-family: Arial, sans-serif; max-width: 600px; margin: auto;
44
+ background-color: #f9f9f9; border-radius: 10px; padding: 20px;
45
+ box-shadow: 0 4px 12px rgba(0,0,0,0.1);">
46
+ <h2 style="color: #2c3e50; border-bottom: 2px solid #ddd; padding-bottom: 10px;">Model Info</h2>
47
+ """
48
+ for key, value in data.items():
49
+ html += f"""
50
+ <div style="margin-bottom: 12px;">
51
+ <strong style="color: #34495e; display: inline-block; width: 160px;">{key}:</strong>
52
+ <span style="color: #2c3e50;">{value}</span>
53
+ </div>
54
+ """
55
+ html += "</div>"
56
+ return html
57
+
58
+
59
+ def load_config():
60
+ with open("config.yaml", "r", encoding="utf-8") as f:
61
+ return yaml.safe_load(f)
62
+
63
+
64
+ def render_modern_info():
65
+ try:
66
+ config = load_config()
67
+ return generate_pretty_html(config)
68
+ except Exception as e:
69
+ return f"<div style='color: red;'>Error loading config: {str(e)}</div>"
70
+
71
+
72
+ def load_readme():
73
+ with open("README.md", "r", encoding="utf-8") as f:
74
+ return f.read()
75
+
76
+
77
+ # ================== Helper Functions ==================
78
+ def split_text_into_chunks(text, max_chars=400):
79
+ sentences = text.replace("...", ".").split(". ")
80
+ chunks = []
81
+ current_chunk = ""
82
+ for sentence in sentences:
83
+ if len(current_chunk) + len(sentence) + 2 < max_chars:
84
+ current_chunk += ". " + sentence if current_chunk else sentence
85
+ else:
86
+ chunks.append(current_chunk)
87
+ current_chunk = sentence
88
+ if current_chunk:
89
+ chunks.append(current_chunk)
90
+ return [f"{chunk}." for chunk in chunks if chunk.strip()]
91
+
92
+
93
+ # ================== Model Loading ==================
94
+ @spaces.GPU
95
+ def load_models():
96
+ global tokenizer, llm_model, tts_processor, tts_model, tts_vocoder, speaker_embeddings, whisper_processor, whisper_model
97
+ hf_token = os.environ.get("HF_TOKEN")
98
+
99
+ # LLM
100
+ if tokenizer is None or llm_model is None:
101
+ try:
102
+ tokenizer = AutoTokenizer.from_pretrained(HUGGINGFACE_MODEL_ID, token=hf_token)
103
+ if tokenizer.pad_token is None:
104
+ tokenizer.pad_token = tokenizer.eos_token
105
+ llm_model = AutoModelForCausalLM.from_pretrained(
106
+ HUGGINGFACE_MODEL_ID,
107
+ torch_dtype=TORCH_DTYPE,
108
+ device_map="auto",
109
+ token=hf_token
110
+ ).eval()
111
+ print("LLM loaded successfully.")
112
+ except Exception as e:
113
+ print(f"Error loading LLM: {e}")
114
+
115
+ # TTS
116
+ if tts_processor is None or tts_model is None or tts_vocoder is None:
117
+ try:
118
+ tts_processor = SpeechT5Processor.from_pretrained(TTS_MODEL_ID, token=hf_token)
119
+ tts_model = SpeechT5ForTextToSpeech.from_pretrained(TTS_MODEL_ID, token=hf_token)
120
+ tts_vocoder = SpeechT5HifiGan.from_pretrained(TTS_VOCODER_ID, token=hf_token)
121
+ embeddings = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation", token=hf_token)
122
+ speaker_embeddings = torch.tensor(embeddings[7306]["xvector"]).unsqueeze(0)
123
+ device = llm_model.device if llm_model else 'cpu'
124
+ tts_model.to(device)
125
+ tts_vocoder.to(device)
126
+ speaker_embeddings = speaker_embeddings.to(device)
127
+ print("TTS models loaded.")
128
+ except Exception as e:
129
+ print(f"Error loading TTS: {e}")
130
+
131
+ # STT
132
+ if whisper_processor is None or whisper_model is None:
133
+ try:
134
+ whisper_processor = WhisperProcessor.from_pretrained(STT_MODEL_ID, token=hf_token)
135
+ whisper_model = WhisperForConditionalGeneration.from_pretrained(STT_MODEL_ID, token=hf_token)
136
+ device = llm_model.device if llm_model else 'cpu'
137
+ whisper_model.to(device)
138
+ print("Whisper loaded.")
139
+ except Exception as e:
140
+ print(f"Error loading Whisper: {e}")
141
+
142
+
143
+ # ================== Chat & Audio Functions ==================
144
+ @spaces.GPU
145
+ def generate_response_and_audio(message, history):
146
+ global first_load
147
+ if first_load:
148
+ load_models()
149
+ first_load = False
150
+
151
+ global tokenizer, llm_model, tts_processor, tts_model, tts_vocoder, speaker_embeddings
152
+
153
+ if tokenizer is None or llm_model is None:
154
+ return [{"role": "assistant", "content": "Error: LLM not loaded."}], None
155
+
156
+ messages = history.copy()
157
+ messages.append({"role": "user", "content": message})
158
+
159
+ try:
160
+ input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
161
+ except:
162
+ input_text = ""
163
+ for item in history:
164
+ input_text += f"{item['role'].capitalize()}: {item['content']}\n"
165
+ input_text += f"User: {message}\nAssistant:"
166
+
167
+ try:
168
+ inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True).to(llm_model.device)
169
+ output_ids = llm_model.generate(
170
+ inputs["input_ids"],
171
+ attention_mask=inputs["attention_mask"],
172
+ max_new_tokens=MAX_NEW_TOKENS,
173
+ do_sample=DO_SAMPLE,
174
+ temperature=TEMPERATURE,
175
+ top_k=TOP_K,
176
+ top_p=TOP_P,
177
+ pad_token_id=tokenizer.eos_token_id
178
+ )
179
+ generated_text = tokenizer.decode(output_ids[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True).strip()
180
+ except Exception as e:
181
+ print(f"LLM error: {e}")
182
+ return history + [{"role": "assistant", "content": "I had an issue generating a response."}], None
183
+
184
+ audio_path = None
185
+ if None not in [tts_processor, tts_model, tts_vocoder, speaker_embeddings]:
186
+ try:
187
+ device = llm_model.device
188
+ text_chunks = split_text_into_chunks(generated_text)
189
+
190
+ full_speech = []
191
+ for chunk in text_chunks:
192
+ tts_inputs = tts_processor(text=chunk, return_tensors="pt", max_length=512, truncation=True).to(device)
193
+ speech = tts_model.generate_speech(tts_inputs["input_ids"], speaker_embeddings, vocoder=tts_vocoder)
194
+ full_speech.append(speech.cpu())
195
+
196
+ full_speech_tensor = torch.cat(full_speech, dim=0)
197
+
198
+ with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
199
+ audio_path = tmp_file.name
200
+ sf.write(audio_path, full_speech_tensor.numpy(), samplerate=16000)
201
+
202
+ except Exception as e:
203
+ print(f"TTS error: {e}")
204
+
205
+ return history + [{"role": "assistant", "content": generated_text}], audio_path
206
+
207
+
208
+ @spaces.GPU
209
+ def transcribe_audio(filepath):
210
+ global first_load
211
+ if first_load:
212
+ load_models()
213
+ first_load = False
214
+
215
+ global whisper_processor, whisper_model
216
+ if whisper_model is None:
217
+ return "Whisper model not loaded."
218
+
219
+ try:
220
+ audio, sr = librosa.load(filepath, sr=16000)
221
+ inputs = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.to(whisper_model.device)
222
+ outputs = whisper_model.generate(inputs)
223
+ return whisper_processor.batch_decode(outputs, skip_special_tokens=True)[0]
224
+ except Exception as e:
225
+ return f"Transcription failed: {e}"
226
+
227
+
228
+ # ================== Gradio UI ==================
229
+ with gr.Blocks(head="""
230
+ <script src="https://cdn.tailwindcss.com "></script>
231
+ """) as demo:
232
+ gr.Markdown("""
233
+ <div class="bg-gray-900 text-white p-4 rounded-lg shadow-md mb-6">
234
+ <h1 class="text-2xl font-bold">Qwen2.5 Chatbot with Voice Input/Output</h1>
235
+ <p class="text-gray-300">Powered by Gradio + TailwindCSS</p>
236
+ </div>
237
+ """)
238
+
239
+ with gr.Tab("Chat"):
240
+ gr.HTML("""
241
+ <div class="bg-gray-800 p-4 rounded-lg mb-4">
242
+ <label class="block text-gray-300 font-medium mb-2">Chat Interface</label>
243
+ </div>
244
+ """)
245
+ chatbot = gr.Chatbot(type='messages', elem_classes=["bg-gray-800", "text-white"])
246
+ text_input = gr.Textbox(
247
+ placeholder="Type your message...",
248
+ label="User Input",
249
+ elem_classes=["bg-gray-700", "text-white", "border-gray-600"]
250
+ )
251
+ audio_output = gr.Audio(label="Response Audio", autoplay=True)
252
+ text_input.submit(generate_response_and_audio, [text_input, chatbot], [chatbot, audio_output])
253
+
254
+ with gr.Tab("Transcribe"):
255
+ gr.HTML("""
256
+ <div class="bg-gray-800 p-4 rounded-lg mb-4">
257
+ <label class="block text-gray-300 font-medium mb-2">Audio Transcription</label>
258
+ </div>
259
+ """)
260
+ audio_input = gr.Audio(type="filepath", label="Upload Audio")
261
+ transcribed = gr.Textbox(
262
+ label="Transcription",
263
+ elem_classes=["bg-gray-700", "text-white", "border-gray-600"]
264
+ )
265
+ audio_input.upload(transcribe_audio, audio_input, transcribed)
266
+
267
+ clear_btn = gr.Button("Clear All", elem_classes=["bg-gray-600", "hover:bg-gray-500", "text-white", "mt-4"])
268
+ clear_btn.click(lambda: ([], "", None), None, [chatbot, text_input, audio_output])
269
+
270
+ html_output = gr.HTML("""
271
+ <div class="bg-gray-800 text-white p-4 rounded-lg mt-6 text-center">
272
+ Loading model info...
273
+ </div>
274
+ """)
275
+ demo.load(fn=render_modern_info, outputs=html_output)
276
+
277
+
278
+ # ================== Launch App ==================
279
+ demo.queue().launch()