Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,398 Bytes
5199c19 212bb71 5199c19 8c12b3d 5199c19 212bb71 5199c19 212bb71 5199c19 212bb71 97c1f17 212bb71 97c1f17 9580a8d 643e711 9580a8d 8c12b3d 212bb71 8c12b3d 2909742 212bb71 5199c19 212bb71 5199c19 212bb71 5199c19 212bb71 5199c19 212bb71 2909742 8c12b3d 5199c19 212bb71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import gradio as gr
import torch
from transformers import (
AutoTokenizer, AutoModelForCausalLM,
SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan,
WhisperProcessor, WhisperForConditionalGeneration
)
from datasets import load_dataset
import os
import spaces
import tempfile
import soundfile as sf
import librosa
import yaml
# ================== Configuration ==================
HUGGINGFACE_MODEL_ID = "HuggingFaceH4/Qwen2.5-1.5B-Instruct-gkd"
TORCH_DTYPE = torch.bfloat16
MAX_NEW_TOKENS = 512
DO_SAMPLE = True
TEMPERATURE = 0.7
TOP_K = 50
TOP_P = 0.95
TTS_MODEL_ID = "microsoft/speecht5_tts"
TTS_VOCODER_ID = "microsoft/speecht5_hifigan"
STT_MODEL_ID = "openai/whisper-small"
# ================== Global Variables ==================
tokenizer = None
llm_model = None
tts_processor = None
tts_model = None
tts_vocoder = None
speaker_embeddings = None
whisper_processor = None
whisper_model = None
first_load = True
# ================== UI Helpers ==================
def generate_pretty_html(data):
html = """
<div style="font-family: Arial, sans-serif; max-width: 600px; margin: auto;
background-color: #f9f9f9; border-radius: 10px; padding: 20px;
box-shadow: 0 4px 12px rgba(0,0,0,0.1);">
<h2 style="color: #2c3e50; border-bottom: 2px solid #ddd; padding-bottom: 10px;">Model Info</h2>
"""
for key, value in data.items():
html += f"""
<div style="margin-bottom: 12px;">
<strong style="color: #34495e; display: inline-block; width: 160px;">{key}:</strong>
<span style="color: #2c3e50;">{value}</span>
</div>
"""
html += "</div>"
return html
def load_config():
with open("config.yaml", "r", encoding="utf-8") as f:
return yaml.safe_load(f) # Loads only the first document
def render_modern_info():
try:
config = load_config()
return generate_pretty_html(config)
except Exception as e:
return f"<div style='color: red;'>Error loading config: {str(e)}</div>"
def load_readme():
with open("README.md", "r", encoding="utf-8") as f:
return f.read()
# ================== Helper Functions ==================
def split_text_into_chunks(text, max_chars=400):
sentences = text.replace("...", ".").split(". ")
chunks = []
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) + 2 < max_chars:
current_chunk += ". " + sentence if current_chunk else sentence
else:
chunks.append(current_chunk)
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk)
return [f"{chunk}." for chunk in chunks if chunk.strip()]
# ================== Model Loading ==================
@spaces.GPU
def load_models():
global tokenizer, llm_model, tts_processor, tts_model, tts_vocoder, speaker_embeddings, whisper_processor, whisper_model
hf_token = os.environ.get("HF_TOKEN")
# LLM
if tokenizer is None or llm_model is None:
try:
tokenizer = AutoTokenizer.from_pretrained(HUGGINGFACE_MODEL_ID, token=hf_token)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
llm_model = AutoModelForCausalLM.from_pretrained(
HUGGINGFACE_MODEL_ID,
torch_dtype=TORCH_DTYPE,
device_map="auto",
token=hf_token
).eval()
print("LLM loaded successfully.")
except Exception as e:
print(f"Error loading LLM: {e}")
# TTS
if tts_processor is None or tts_model is None or tts_vocoder is None:
try:
tts_processor = SpeechT5Processor.from_pretrained(TTS_MODEL_ID, token=hf_token)
tts_model = SpeechT5ForTextToSpeech.from_pretrained(TTS_MODEL_ID, token=hf_token)
tts_vocoder = SpeechT5HifiGan.from_pretrained(TTS_VOCODER_ID, token=hf_token)
embeddings = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation", token=hf_token)
speaker_embeddings = torch.tensor(embeddings[7306]["xvector"]).unsqueeze(0)
device = llm_model.device if llm_model else 'cpu'
tts_model.to(device)
tts_vocoder.to(device)
speaker_embeddings = speaker_embeddings.to(device)
print("TTS models loaded.")
except Exception as e:
print(f"Error loading TTS: {e}")
# STT
if whisper_processor is None or whisper_model is None:
try:
whisper_processor = WhisperProcessor.from_pretrained(STT_MODEL_ID, token=hf_token)
whisper_model = WhisperForConditionalGeneration.from_pretrained(STT_MODEL_ID, token=hf_token)
device = llm_model.device if llm_model else 'cpu'
whisper_model.to(device)
print("Whisper loaded.")
except Exception as e:
print(f"Error loading Whisper: {e}")
# ================== Chat & Audio Functions ==================
@spaces.GPU
def generate_response_and_audio(message, history):
global first_load
if first_load:
load_models()
first_load = False
global tokenizer, llm_model, tts_processor, tts_model, tts_vocoder, speaker_embeddings
if tokenizer is None or llm_model is None:
return [{"role": "assistant", "content": "Error: LLM not loaded."}], None
messages = history.copy()
messages.append({"role": "user", "content": message})
try:
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
except:
input_text = ""
for item in history:
input_text += f"{item['role'].capitalize()}: {item['content']}\n"
input_text += f"User: {message}\nAssistant:"
try:
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True).to(llm_model.device)
output_ids = llm_model.generate(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=MAX_NEW_TOKENS,
do_sample=DO_SAMPLE,
temperature=TEMPERATURE,
top_k=TOP_K,
top_p=TOP_P,
pad_token_id=tokenizer.eos_token_id
)
generated_text = tokenizer.decode(output_ids[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True).strip()
except Exception as e:
print(f"LLM error: {e}")
return history + [{"role": "assistant", "content": "I had an issue generating a response."}], None
audio_path = None
if None not in [tts_processor, tts_model, tts_vocoder, speaker_embeddings]:
try:
device = llm_model.device
text_chunks = split_text_into_chunks(generated_text)
full_speech = []
for chunk in text_chunks:
tts_inputs = tts_processor(text=chunk, return_tensors="pt", max_length=512, truncation=True).to(device)
speech = tts_model.generate_speech(tts_inputs["input_ids"], speaker_embeddings, vocoder=tts_vocoder)
full_speech.append(speech.cpu())
full_speech_tensor = torch.cat(full_speech, dim=0)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
audio_path = tmp_file.name
sf.write(audio_path, full_speech_tensor.numpy(), samplerate=16000)
except Exception as e:
print(f"TTS error: {e}")
return history + [{"role": "assistant", "content": generated_text}], audio_path
@spaces.GPU
def transcribe_audio(filepath):
global first_load
if first_load:
load_models()
first_load = False
global whisper_processor, whisper_model
if whisper_model is None:
return "Whisper model not loaded."
try:
audio, sr = librosa.load(filepath, sr=16000)
inputs = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.to(whisper_model.device)
outputs = whisper_model.generate(inputs)
return whisper_processor.batch_decode(outputs, skip_special_tokens=True)[0]
except Exception as e:
return f"Transcription failed: {e}"
# ================== Gradio UI ==================
with gr.Blocks() as demo:
gr.Markdown("# Qwen2.5 Chatbot with Voice Input/Output")
with gr.Tab("Chat"):
chatbot = gr.Chatbot(type='messages')
text_input = gr.Textbox(placeholder="Type your message...")
audio_output = gr.Audio(label="Response Audio", autoplay=True)
text_input.submit(generate_response_and_audio, [text_input, chatbot], [chatbot, audio_output])
with gr.Tab("Transcribe"):
audio_input = gr.Audio(type="filepath", label="Upload Audio")
transcribed = gr.Textbox(label="Transcription")
audio_input.upload(transcribe_audio, audio_input, transcribed)
clear_btn = gr.Button("Clear All")
clear_btn.click(lambda: ([], "", None), None, [chatbot, text_input, audio_output])
gr.Markdown(load_readme())
gr.Markdown("---")
# β
Define html_output BEFORE using it
html_output = gr.HTML("<div style='text-align:center; padding: 20px;'>Loading model info...</div>")
# β
Now this works!
demo.load(fn=render_modern_info, outputs=html_output)
# ================== Launch App ==================
demo.queue().launch() |