File size: 6,726 Bytes
589237f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import gradio as gr
import torch
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    SpeechT5Processor,
    SpeechT5ForTextToSpeech,
    SpeechT5HifiGan,
    WhisperProcessor,
    WhisperForConditionalGeneration
)
from datasets import load_dataset
import os
import spaces
import tempfile
import soundfile as sf
import librosa

# --- Configuration ---
HUGGINGFACE_MODEL_ID = "HuggingFaceH4/Qwen2.5-1.5B-Instruct-gkd"
TORCH_DTYPE = torch.bfloat16
MAX_NEW_TOKENS = 512
DO_SAMPLE = True
TEMPERATURE = 0.7
TOP_K = 50
TOP_P = 0.95

TTS_MODEL_ID = "microsoft/speecht5_tts"
TTS_VOCODER_ID = "microsoft/speecht5_hifigan"
STT_MODEL_ID = "openai/whisper-small"

# --- Global Variables ---
tokenizer = None
llm_model = None
tts_processor = None
tts_model = None
tts_vocoder = None
speaker_embeddings = None
whisper_processor = None
whisper_model = None
first_load = True

# --- Load Models Function ---
@spaces.GPU
def load_models():
    global tokenizer, llm_model, tts_processor, tts_model, tts_vocoder, speaker_embeddings
    global whisper_processor, whisper_model

    if (tokenizer is not None and llm_model is not None and tts_model is not None and
        whisper_model is not None):
        print("All models already loaded.")
        return

    hf_token = os.environ.get("HF_TOKEN")

    # LLM
    try:
        tokenizer = AutoTokenizer.from_pretrained(HUGGINGFACE_MODEL_ID, token=hf_token)
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
        llm_model = AutoModelForCausalLM.from_pretrained(
            HUGGINGFACE_MODEL_ID,
            torch_dtype=TORCH_DTYPE,
            device_map="auto",
            token=hf_token
        ).eval()
        print("LLM loaded successfully.")
    except Exception as e:
        print(f"Error loading LLM: {e}")

    # TTS
    try:
        tts_processor = SpeechT5Processor.from_pretrained(TTS_MODEL_ID, token=hf_token)
        tts_model = SpeechT5ForTextToSpeech.from_pretrained(TTS_MODEL_ID, token=hf_token)
        tts_vocoder = SpeechT5HifiGan.from_pretrained(TTS_VOCODER_ID, token=hf_token)
        embeddings = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation", token=hf_token)
        speaker_embeddings = torch.tensor(embeddings[7306]["xvector"]).unsqueeze(0)
        device = llm_model.device if llm_model else 'cpu'
        tts_model.to(device)
        tts_vocoder.to(device)
        speaker_embeddings = speaker_embeddings.to(device)
        print("TTS models loaded.")
    except Exception as e:
        print(f"Error loading TTS: {e}")

    # STT
    try:
        whisper_processor = WhisperProcessor.from_pretrained(STT_MODEL_ID, token=hf_token)
        whisper_model = WhisperForConditionalGeneration.from_pretrained(STT_MODEL_ID, token=hf_token)
        whisper_model.to(llm_model.device if llm_model else 'cpu')
        print("Whisper loaded.")
    except Exception as e:
        print(f"Error loading Whisper: {e}")

# --- Generate Response + Audio ---
@spaces.GPU
def generate_response_and_audio(message, history):
    global first_load
    if first_load:
        load_models()
        first_load = False

    global tokenizer, llm_model, tts_processor, tts_model, tts_vocoder, speaker_embeddings

    if tokenizer is None or llm_model is None:
        return [{"role": "assistant", "content": "Error: LLM not loaded."}], None

    messages = history.copy()
    messages.append({"role": "user", "content": message})

    try:
        input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    except:
        input_text = ""
        for item in history:
            input_text += f"{item['role'].capitalize()}: {item['content']}\n"
        input_text += f"User: {message}\nAssistant:"

    try:
        inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True).to(llm_model.device)
        output_ids = llm_model.generate(
            inputs["input_ids"],
            attention_mask=inputs["attention_mask"],
            max_new_tokens=MAX_NEW_TOKENS,
            do_sample=DO_SAMPLE,
            temperature=TEMPERATURE,
            top_k=TOP_K,
            top_p=TOP_P,
            pad_token_id=tokenizer.eos_token_id
        )
        generated_text = tokenizer.decode(output_ids[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True).strip()
    except Exception as e:
        print(f"LLM error: {e}")
        return history + [{"role": "assistant", "content": "I had an issue generating a response."}], None

    audio_path = None
    if None not in [tts_processor, tts_model, tts_vocoder, speaker_embeddings]:
        try:
            tts_inputs = tts_processor(text=generated_text, return_tensors="pt", max_length=550, truncation=True).to(llm_model.device)
            speech = tts_model.generate_speech(tts_inputs["input_ids"], speaker_embeddings, vocoder=tts_vocoder)
            with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
                audio_path = tmp_file.name
                sf.write(audio_path, speech.cpu().numpy(), samplerate=16000)
        except Exception as e:
            print(f"TTS error: {e}")

    return history + [{"role": "assistant", "content": generated_text}], audio_path

# --- Transcribe Audio ---
@spaces.GPU
def transcribe_audio(filepath):
    global first_load
    if first_load:
        load_models()
        first_load = False

    global whisper_processor, whisper_model
    if whisper_model is None:
        return "Whisper model not loaded."

    try:
        audio, sr = librosa.load(filepath, sr=16000)
        inputs = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.to(whisper_model.device)
        outputs = whisper_model.generate(inputs)
        return whisper_processor.batch_decode(outputs, skip_special_tokens=True)[0]
    except Exception as e:
        return f"Transcription failed: {e}"

# --- Gradio UI ---
with gr.Blocks() as demo:
    gr.Markdown("# Qwen2.5 Chatbot with Voice Input/Output")
    
    with gr.Tab("Chat"):
        chatbot = gr.Chatbot(type='messages')
        text_input = gr.Textbox(placeholder="Type your message...")
        audio_output = gr.Audio(label="Response Audio", autoplay=True)
        text_input.submit(generate_response_and_audio, [text_input, chatbot], [chatbot, audio_output])

    with gr.Tab("Transcribe"):
        audio_input = gr.Audio(type="filepath", label="Upload Audio")
        transcribed = gr.Textbox(label="Transcription")
        audio_input.upload(transcribe_audio, audio_input, transcribed)

    clear_btn = gr.Button("Clear All")
    clear_btn.click(lambda: ([], "", None), None, [chatbot, text_input, audio_output])

demo.queue().launch()