Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,73 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from neuralop.models import FNO
|
4 |
import matplotlib.pyplot as plt
|
5 |
import numpy as np
|
6 |
-
import os
|
|
|
|
|
7 |
|
8 |
# --- Configuration ---
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
12 |
|
13 |
# --- Global Variables for Model and Data (loaded once) ---
|
14 |
MODEL = None
|
15 |
-
FULL_DATASET_X = None
|
16 |
-
|
17 |
-
# ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def load_model():
|
19 |
"""Loads the pre-trained FNO model."""
|
20 |
global MODEL
|
21 |
if MODEL is None:
|
22 |
print("Loading FNO model...")
|
23 |
try:
|
24 |
-
# Ensure model is loaded to CPU for general compatibility in Spaces
|
25 |
MODEL = torch.load(MODEL_PATH, weights_only=False, map_location='cpu')
|
26 |
-
MODEL.eval()
|
27 |
print("Model loaded successfully.")
|
28 |
except Exception as e:
|
29 |
print(f"Error loading model: {e}")
|
30 |
raise gr.Error(f"Failed to load model: {e}")
|
31 |
return MODEL
|
32 |
|
33 |
-
# --- 2. Dataset Loading Function ---
|
34 |
def load_dataset():
|
35 |
-
"""
|
36 |
global FULL_DATASET_X
|
37 |
if FULL_DATASET_X is None:
|
38 |
-
|
|
|
39 |
try:
|
40 |
-
data = torch.load(
|
41 |
if isinstance(data, dict) and 'x' in data:
|
42 |
FULL_DATASET_X = data['x']
|
43 |
elif isinstance(data, torch.Tensor):
|
@@ -45,54 +75,47 @@ def load_dataset():
|
|
45 |
else:
|
46 |
raise ValueError("Unknown dataset format or 'x' key missing.")
|
47 |
print(f"Dataset loaded. Total samples: {FULL_DATASET_X.shape[0]}")
|
48 |
-
except FileNotFoundError:
|
49 |
-
print(f"Dataset file not found at {DATASET_PATH}")
|
50 |
-
raise gr.Error(f"Dataset file not found. Please ensure '{DATASET_PATH}' is in your Space.")
|
51 |
except Exception as e:
|
52 |
print(f"Error loading dataset: {e}")
|
53 |
-
raise gr.Error(f"Failed to load dataset: {e}")
|
54 |
return FULL_DATASET_X
|
55 |
|
56 |
-
# --- 3. Inference Function for Gradio ---
|
57 |
def run_inference(sample_index: int):
|
58 |
"""
|
59 |
Performs inference for a selected sample index from the dataset.
|
60 |
Returns two Matplotlib figures: one for input, one for output.
|
61 |
"""
|
62 |
model = load_model()
|
63 |
-
dataset = load_dataset()
|
64 |
|
65 |
if not (0 <= sample_index < dataset.shape[0]):
|
66 |
raise gr.Error(f"Sample index out of range. Please choose between 0 and {dataset.shape[0]-1}.")
|
67 |
|
68 |
-
# Extract single initial condition and add channel dimension
|
69 |
-
# (shape: [1, H, W] -> [1, 1, H, W])
|
70 |
single_initial_condition = dataset[sample_index:sample_index+1, :, :].unsqueeze(1)
|
71 |
|
72 |
print(f"Running inference for sample index {sample_index}...")
|
73 |
with torch.no_grad():
|
74 |
predicted_solution = model(single_initial_condition)
|
75 |
|
76 |
-
# Convert tensors to numpy for plotting
|
77 |
input_numpy = single_initial_condition.squeeze().cpu().numpy()
|
78 |
output_numpy = predicted_solution.squeeze().cpu().numpy()
|
79 |
|
80 |
-
# Create Matplotlib figures
|
81 |
fig_input, ax_input = plt.subplots()
|
82 |
im_input = ax_input.imshow(input_numpy, cmap='viridis')
|
83 |
ax_input.set_title(f"Initial Condition (Sample {sample_index})")
|
84 |
fig_input.colorbar(im_input, ax=ax_input, label="Vorticity")
|
85 |
-
plt.close(fig_input)
|
86 |
|
87 |
fig_output, ax_output = plt.subplots()
|
88 |
im_output = ax_output.imshow(output_numpy, cmap='viridis')
|
89 |
ax_output.set_title(f"Predicted Solution")
|
90 |
fig_output.colorbar(im_output, ax=ax_output, label="Vorticity")
|
91 |
-
plt.close(fig_output)
|
92 |
|
93 |
return fig_input, fig_output
|
94 |
|
95 |
-
# --- Gradio Interface Setup ---
|
96 |
with gr.Blocks() as demo:
|
97 |
gr.Markdown(
|
98 |
"""
|
@@ -104,9 +127,11 @@ with gr.Blocks() as demo:
|
|
104 |
|
105 |
with gr.Row():
|
106 |
with gr.Column():
|
|
|
|
|
107 |
sample_input_slider = gr.Slider(
|
108 |
minimum=0,
|
109 |
-
maximum=9999,
|
110 |
value=0,
|
111 |
step=1,
|
112 |
label="Select Sample Index"
|
@@ -116,23 +141,18 @@ with gr.Blocks() as demo:
|
|
116 |
input_image_plot = gr.Plot(label="Selected Initial Condition")
|
117 |
output_image_plot = gr.Plot(label="Predicted Solution")
|
118 |
|
119 |
-
# Bind the button click to the inference function
|
120 |
run_button.click(
|
121 |
fn=run_inference,
|
122 |
inputs=[sample_input_slider],
|
123 |
outputs=[input_image_plot, output_image_plot]
|
124 |
)
|
125 |
|
126 |
-
# Optional: Load initial data on startup for the first display
|
127 |
def load_initial_data_and_predict():
|
128 |
-
# Ensure model and dataset are loaded when the space starts
|
129 |
load_model()
|
130 |
-
load_dataset()
|
131 |
-
# Run inference for the default value (index 0)
|
132 |
return run_inference(0)
|
133 |
|
134 |
demo.load(load_initial_data_and_predict, inputs=None, outputs=[input_image_plot, output_image_plot])
|
135 |
|
136 |
-
# Launch the Gradio app (only runs when you test locally)
|
137 |
if __name__ == "__main__":
|
138 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from neuralop.models import FNO
|
4 |
import matplotlib.pyplot as plt
|
5 |
import numpy as np
|
6 |
+
import os
|
7 |
+
import requests # <--- ADD THIS IMPORT for downloading files
|
8 |
+
from tqdm import tqdm # Optional: for a progress bar during download
|
9 |
|
10 |
# --- Configuration ---
|
11 |
+
MODEL_PATH = "fno_ckpt_single_res" # This model file still needs to be in your repo
|
12 |
+
# Zenodo direct download URL for the Navier-Stokes 2D dataset
|
13 |
+
DATASET_URL = "https://zenodo.org/record/12825163/files/navier_stokes_2d.pt?download=1"
|
14 |
+
LOCAL_DATASET_PATH = "navier_stokes_2d.pt" # Where the file will be saved locally in the Space
|
15 |
|
16 |
# --- Global Variables for Model and Data (loaded once) ---
|
17 |
MODEL = None
|
18 |
+
FULL_DATASET_X = None
|
19 |
+
|
20 |
+
# --- Function to Download Dataset ---
|
21 |
+
def download_file(url, local_filename):
|
22 |
+
"""Downloads a file from a URL to a local path with a progress bar."""
|
23 |
+
if os.path.exists(local_filename):
|
24 |
+
print(f"{local_filename} already exists. Skipping download.")
|
25 |
+
return
|
26 |
+
|
27 |
+
print(f"Downloading {url} to {local_filename}...")
|
28 |
+
try:
|
29 |
+
response = requests.get(url, stream=True)
|
30 |
+
response.raise_for_status() # Raise an HTTPError for bad responses (4xx or 5xx)
|
31 |
+
|
32 |
+
total_size = int(response.headers.get('content-length', 0))
|
33 |
+
block_size = 1024 # 1 KB
|
34 |
+
|
35 |
+
with open(local_filename, 'wb') as f:
|
36 |
+
with tqdm(total=total_size, unit='iB', unit_scale=True, desc=local_filename) as pbar:
|
37 |
+
for chunk in response.iter_content(chunk_size=block_size):
|
38 |
+
if chunk:
|
39 |
+
f.write(chunk)
|
40 |
+
pbar.update(len(chunk))
|
41 |
+
print(f"Downloaded {local_filename} successfully.")
|
42 |
+
except requests.exceptions.RequestException as e:
|
43 |
+
print(f"Error downloading file: {e}")
|
44 |
+
raise gr.Error(f"Failed to download dataset from Zenodo: {e}")
|
45 |
+
|
46 |
+
|
47 |
+
# --- 1. Model Loading Function (No change here for model) ---
|
48 |
def load_model():
|
49 |
"""Loads the pre-trained FNO model."""
|
50 |
global MODEL
|
51 |
if MODEL is None:
|
52 |
print("Loading FNO model...")
|
53 |
try:
|
|
|
54 |
MODEL = torch.load(MODEL_PATH, weights_only=False, map_location='cpu')
|
55 |
+
MODEL.eval()
|
56 |
print("Model loaded successfully.")
|
57 |
except Exception as e:
|
58 |
print(f"Error loading model: {e}")
|
59 |
raise gr.Error(f"Failed to load model: {e}")
|
60 |
return MODEL
|
61 |
|
62 |
+
# --- 2. Dataset Loading Function (MODIFIED) ---
|
63 |
def load_dataset():
|
64 |
+
"""Downloads and loads the initial conditions dataset."""
|
65 |
global FULL_DATASET_X
|
66 |
if FULL_DATASET_X is None:
|
67 |
+
download_file(DATASET_URL, LOCAL_DATASET_PATH) # <--- Download here!
|
68 |
+
print("Loading dataset from local file...")
|
69 |
try:
|
70 |
+
data = torch.load(LOCAL_DATASET_PATH, map_location='cpu')
|
71 |
if isinstance(data, dict) and 'x' in data:
|
72 |
FULL_DATASET_X = data['x']
|
73 |
elif isinstance(data, torch.Tensor):
|
|
|
75 |
else:
|
76 |
raise ValueError("Unknown dataset format or 'x' key missing.")
|
77 |
print(f"Dataset loaded. Total samples: {FULL_DATASET_X.shape[0]}")
|
|
|
|
|
|
|
78 |
except Exception as e:
|
79 |
print(f"Error loading dataset: {e}")
|
80 |
+
raise gr.Error(f"Failed to load dataset from local file: {e}")
|
81 |
return FULL_DATASET_X
|
82 |
|
83 |
+
# --- 3. Inference Function for Gradio (No change) ---
|
84 |
def run_inference(sample_index: int):
|
85 |
"""
|
86 |
Performs inference for a selected sample index from the dataset.
|
87 |
Returns two Matplotlib figures: one for input, one for output.
|
88 |
"""
|
89 |
model = load_model()
|
90 |
+
dataset = load_dataset() # This will trigger download and load if not already done
|
91 |
|
92 |
if not (0 <= sample_index < dataset.shape[0]):
|
93 |
raise gr.Error(f"Sample index out of range. Please choose between 0 and {dataset.shape[0]-1}.")
|
94 |
|
|
|
|
|
95 |
single_initial_condition = dataset[sample_index:sample_index+1, :, :].unsqueeze(1)
|
96 |
|
97 |
print(f"Running inference for sample index {sample_index}...")
|
98 |
with torch.no_grad():
|
99 |
predicted_solution = model(single_initial_condition)
|
100 |
|
|
|
101 |
input_numpy = single_initial_condition.squeeze().cpu().numpy()
|
102 |
output_numpy = predicted_solution.squeeze().cpu().numpy()
|
103 |
|
|
|
104 |
fig_input, ax_input = plt.subplots()
|
105 |
im_input = ax_input.imshow(input_numpy, cmap='viridis')
|
106 |
ax_input.set_title(f"Initial Condition (Sample {sample_index})")
|
107 |
fig_input.colorbar(im_input, ax=ax_input, label="Vorticity")
|
108 |
+
plt.close(fig_input)
|
109 |
|
110 |
fig_output, ax_output = plt.subplots()
|
111 |
im_output = ax_output.imshow(output_numpy, cmap='viridis')
|
112 |
ax_output.set_title(f"Predicted Solution")
|
113 |
fig_output.colorbar(im_output, ax=ax_output, label="Vorticity")
|
114 |
+
plt.close(fig_output)
|
115 |
|
116 |
return fig_input, fig_output
|
117 |
|
118 |
+
# --- Gradio Interface Setup (No change) ---
|
119 |
with gr.Blocks() as demo:
|
120 |
gr.Markdown(
|
121 |
"""
|
|
|
127 |
|
128 |
with gr.Row():
|
129 |
with gr.Column():
|
130 |
+
# Max value can be dynamic based on dataset size if needed,
|
131 |
+
# but 9999 for 10,000 samples is correct.
|
132 |
sample_input_slider = gr.Slider(
|
133 |
minimum=0,
|
134 |
+
maximum=9999,
|
135 |
value=0,
|
136 |
step=1,
|
137 |
label="Select Sample Index"
|
|
|
141 |
input_image_plot = gr.Plot(label="Selected Initial Condition")
|
142 |
output_image_plot = gr.Plot(label="Predicted Solution")
|
143 |
|
|
|
144 |
run_button.click(
|
145 |
fn=run_inference,
|
146 |
inputs=[sample_input_slider],
|
147 |
outputs=[input_image_plot, output_image_plot]
|
148 |
)
|
149 |
|
|
|
150 |
def load_initial_data_and_predict():
|
|
|
151 |
load_model()
|
152 |
+
load_dataset() # This will now download if not present
|
|
|
153 |
return run_inference(0)
|
154 |
|
155 |
demo.load(load_initial_data_and_predict, inputs=None, outputs=[input_image_plot, output_image_plot])
|
156 |
|
|
|
157 |
if __name__ == "__main__":
|
158 |
demo.launch()
|