Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,24 +4,19 @@ from neuralop.models import FNO
|
|
4 |
import matplotlib.pyplot as plt
|
5 |
import numpy as np
|
6 |
import os
|
7 |
-
# import spaces # No longer needed if running purely on CPU and not using @spaces.GPU()
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
HF_DATASET_REPO_ID = "ajsbsd/navier-stokes-2d-dataset" # Your new repo ID
|
13 |
HF_DATASET_FILENAME = "navier_stokes_2d.pt"
|
14 |
|
15 |
-
# --- Global Variables for Model and Data (loaded once) ---
|
16 |
MODEL = None
|
17 |
FULL_DATASET_X = None
|
18 |
|
19 |
-
# --- Function to Download Dataset from HF Hub ---
|
20 |
def download_file_from_hf_hub(repo_id, filename):
|
21 |
"""Downloads a file from Hugging Face Hub."""
|
22 |
print(f"Downloading {filename} from {repo_id} on Hugging Face Hub...")
|
23 |
try:
|
24 |
-
# hf_hub_download returns the local path to the downloaded file
|
25 |
local_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
26 |
print(f"Downloaded {filename} to {local_path} successfully.")
|
27 |
return local_path
|
@@ -29,8 +24,6 @@ def download_file_from_hf_hub(repo_id, filename):
|
|
29 |
print(f"Error downloading file from HF Hub: {e}")
|
30 |
raise gr.Error(f"Failed to download dataset from Hugging Face Hub: {e}")
|
31 |
|
32 |
-
|
33 |
-
# --- 1. Model Loading Function (Loads to CPU, device transfer handled in run_inference) ---
|
34 |
def load_model():
|
35 |
"""Loads the pre-trained FNO model to CPU."""
|
36 |
global MODEL
|
@@ -45,7 +38,6 @@ def load_model():
|
|
45 |
raise gr.Error(f"Failed to load model: {e}")
|
46 |
return MODEL
|
47 |
|
48 |
-
# --- 2. Dataset Loading Function ---
|
49 |
def load_dataset():
|
50 |
"""Downloads and loads the initial conditions dataset from HF Hub."""
|
51 |
global FULL_DATASET_X
|
@@ -56,11 +48,7 @@ def load_dataset():
|
|
56 |
data = torch.load(local_dataset_path, map_location='cpu')
|
57 |
if isinstance(data, dict) and 'x' in data:
|
58 |
FULL_DATASET_X = data['x']
|
59 |
-
elif isinstance(
|
60 |
-
|
61 |
-
Here's your `app.py` code with the blurb added in the correct place. I've also updated the `run_inference` function to explicitly target `torch.device("cpu")` and removed the `@spaces.GPU()` decorator, which aligns with your successful run on ZeroCPU.
|
62 |
-
|
63 |
-
```pythonata, torch.Tensor):
|
64 |
FULL_DATASET_X = data
|
65 |
else:
|
66 |
raise ValueError("Unknown dataset format or 'x' key missing.")
|
@@ -70,41 +58,34 @@ Here's your `app.py` code with the blurb added in the correct place. I've also u
|
|
70 |
raise gr.Error(f"Failed to load dataset from local file: {e}")
|
71 |
return FULL_DATASET_X
|
72 |
|
73 |
-
# --- 3. Inference Function for Gradio ---
|
74 |
-
# Removed @spaces.GPU() decorator as you're running on ZeroCPU
|
75 |
def run_inference(sample_index: int):
|
76 |
"""
|
77 |
Performs inference for a selected sample index from the dataset on CPU.
|
78 |
Returns two Matplotlib figures: one for input, one for output.
|
79 |
"""
|
80 |
-
|
81 |
-
device = torch.device("cpu") # Explicitly set to CPU as you're on ZeroCPU
|
82 |
|
83 |
-
model = load_model()
|
84 |
|
85 |
-
# Model device check is still good practice, even if always CPU here
|
86 |
if next(model.parameters()).device != device:
|
87 |
model.to(device)
|
88 |
-
print(f"Model moved to {device} within run_inference.")
|
89 |
|
90 |
dataset = load_dataset()
|
91 |
|
92 |
if not (0 <= sample_index < dataset.shape[0]):
|
93 |
raise gr.Error(f"Sample index out of range. Please choose between 0 and {dataset.shape[0]-1}.")
|
94 |
|
95 |
-
# Move input tensor to the correct device
|
96 |
single_initial_condition = dataset[sample_index:sample_index+1, :, :].unsqueeze(1).to(device)
|
97 |
-
print(f"Input moved to {device}.")
|
98 |
|
99 |
print(f"Running inference for sample index {sample_index}...")
|
100 |
-
with torch.no_grad():
|
101 |
predicted_solution = model(single_initial_condition)
|
102 |
|
103 |
-
# Move results back to CPU for plotting with Matplotlib (already on CPU now)
|
104 |
input_numpy = single_initial_condition.squeeze().cpu().numpy()
|
105 |
output_numpy = predicted_solution.squeeze().cpu().numpy()
|
106 |
|
107 |
-
# Create Matplotlib figures
|
108 |
fig_input, ax_input = plt.subplots()
|
109 |
im_input = ax_input.imshow(input_numpy, cmap='viridis')
|
110 |
ax_input.set_title(f"Initial Condition (Sample {sample_index})")
|
@@ -119,7 +100,6 @@ def run_inference(sample_index: int):
|
|
119 |
|
120 |
return fig_input, fig_output
|
121 |
|
122 |
-
# --- Gradio Interface Setup (MODIFIED to add blurb) ---
|
123 |
with gr.Blocks() as demo:
|
124 |
gr.Markdown(
|
125 |
"""
|
@@ -140,14 +120,12 @@ with gr.Blocks() as demo:
|
|
140 |
)
|
141 |
run_button = gr.Button("Generate Solution")
|
142 |
|
143 |
-
# --- ADDED BLURB HERE ---
|
144 |
gr.Markdown(
|
145 |
"""
|
146 |
### Project Inspiration
|
147 |
This Hugging Face Space demonstrates the concepts and models from the research paper **'Principled approaches for extending neural architectures to function spaces for operator learning'** (available as a preprint on [arXiv](https://arxiv.org/abs/2506.10973)). The underlying code for the neural operators and the experiments can be explored further in the associated [GitHub repository](https://github.com/neuraloperator/NNs-to-NOs). The Navier-Stokes dataset used for training and inference, crucial for these fluid dynamics simulations, is openly accessible and citable via [Zenodo](https://zenodo.org/records/12825163).
|
148 |
"""
|
149 |
)
|
150 |
-
# --- END ADDED BLURB ---
|
151 |
|
152 |
with gr.Column():
|
153 |
input_image_plot = gr.Plot(label="Selected Initial Condition")
|
@@ -160,10 +138,8 @@ with gr.Blocks() as demo:
|
|
160 |
)
|
161 |
|
162 |
def load_initial_data_and_predict():
|
163 |
-
# These functions are called during main process startup (CPU)
|
164 |
load_model()
|
165 |
load_dataset()
|
166 |
-
# The actual inference call here will now run on CPU
|
167 |
return run_inference(0)
|
168 |
|
169 |
demo.load(load_initial_data_and_predict, inputs=None, outputs=[input_image_plot, output_image_plot])
|
|
|
4 |
import matplotlib.pyplot as plt
|
5 |
import numpy as np
|
6 |
import os
|
|
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
|
9 |
+
MODEL_PATH = "fno_ckpt_single_res"
|
10 |
+
HF_DATASET_REPO_ID = "ajsbsd/navier-stokes-2d-dataset"
|
|
|
11 |
HF_DATASET_FILENAME = "navier_stokes_2d.pt"
|
12 |
|
|
|
13 |
MODEL = None
|
14 |
FULL_DATASET_X = None
|
15 |
|
|
|
16 |
def download_file_from_hf_hub(repo_id, filename):
|
17 |
"""Downloads a file from Hugging Face Hub."""
|
18 |
print(f"Downloading {filename} from {repo_id} on Hugging Face Hub...")
|
19 |
try:
|
|
|
20 |
local_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
21 |
print(f"Downloaded {filename} to {local_path} successfully.")
|
22 |
return local_path
|
|
|
24 |
print(f"Error downloading file from HF Hub: {e}")
|
25 |
raise gr.Error(f"Failed to download dataset from Hugging Face Hub: {e}")
|
26 |
|
|
|
|
|
27 |
def load_model():
|
28 |
"""Loads the pre-trained FNO model to CPU."""
|
29 |
global MODEL
|
|
|
38 |
raise gr.Error(f"Failed to load model: {e}")
|
39 |
return MODEL
|
40 |
|
|
|
41 |
def load_dataset():
|
42 |
"""Downloads and loads the initial conditions dataset from HF Hub."""
|
43 |
global FULL_DATASET_X
|
|
|
48 |
data = torch.load(local_dataset_path, map_location='cpu')
|
49 |
if isinstance(data, dict) and 'x' in data:
|
50 |
FULL_DATASET_X = data['x']
|
51 |
+
elif isinstance(data, torch.Tensor):
|
|
|
|
|
|
|
|
|
52 |
FULL_DATASET_X = data
|
53 |
else:
|
54 |
raise ValueError("Unknown dataset format or 'x' key missing.")
|
|
|
58 |
raise gr.Error(f"Failed to load dataset from local file: {e}")
|
59 |
return FULL_DATASET_X
|
60 |
|
|
|
|
|
61 |
def run_inference(sample_index: int):
|
62 |
"""
|
63 |
Performs inference for a selected sample index from the dataset on CPU.
|
64 |
Returns two Matplotlib figures: one for input, one for output.
|
65 |
"""
|
66 |
+
device = torch.device("cpu")
|
|
|
67 |
|
68 |
+
model = load_model()
|
69 |
|
|
|
70 |
if next(model.parameters()).device != device:
|
71 |
model.to(device)
|
72 |
+
print(f"Model moved to {device} within run_inference.")
|
73 |
|
74 |
dataset = load_dataset()
|
75 |
|
76 |
if not (0 <= sample_index < dataset.shape[0]):
|
77 |
raise gr.Error(f"Sample index out of range. Please choose between 0 and {dataset.shape[0]-1}.")
|
78 |
|
|
|
79 |
single_initial_condition = dataset[sample_index:sample_index+1, :, :].unsqueeze(1).to(device)
|
80 |
+
print(f"Input moved to {device}.")
|
81 |
|
82 |
print(f"Running inference for sample index {sample_index}...")
|
83 |
+
with torch.no_grad():
|
84 |
predicted_solution = model(single_initial_condition)
|
85 |
|
|
|
86 |
input_numpy = single_initial_condition.squeeze().cpu().numpy()
|
87 |
output_numpy = predicted_solution.squeeze().cpu().numpy()
|
88 |
|
|
|
89 |
fig_input, ax_input = plt.subplots()
|
90 |
im_input = ax_input.imshow(input_numpy, cmap='viridis')
|
91 |
ax_input.set_title(f"Initial Condition (Sample {sample_index})")
|
|
|
100 |
|
101 |
return fig_input, fig_output
|
102 |
|
|
|
103 |
with gr.Blocks() as demo:
|
104 |
gr.Markdown(
|
105 |
"""
|
|
|
120 |
)
|
121 |
run_button = gr.Button("Generate Solution")
|
122 |
|
|
|
123 |
gr.Markdown(
|
124 |
"""
|
125 |
### Project Inspiration
|
126 |
This Hugging Face Space demonstrates the concepts and models from the research paper **'Principled approaches for extending neural architectures to function spaces for operator learning'** (available as a preprint on [arXiv](https://arxiv.org/abs/2506.10973)). The underlying code for the neural operators and the experiments can be explored further in the associated [GitHub repository](https://github.com/neuraloperator/NNs-to-NOs). The Navier-Stokes dataset used for training and inference, crucial for these fluid dynamics simulations, is openly accessible and citable via [Zenodo](https://zenodo.org/records/12825163).
|
127 |
"""
|
128 |
)
|
|
|
129 |
|
130 |
with gr.Column():
|
131 |
input_image_plot = gr.Plot(label="Selected Initial Condition")
|
|
|
138 |
)
|
139 |
|
140 |
def load_initial_data_and_predict():
|
|
|
141 |
load_model()
|
142 |
load_dataset()
|
|
|
143 |
return run_inference(0)
|
144 |
|
145 |
demo.load(load_initial_data_and_predict, inputs=None, outputs=[input_image_plot, output_image_plot])
|