File size: 6,132 Bytes
d467bd4
 
9979917
d467bd4
 
9979917
 
 
d467bd4
 
9979917
 
 
 
d467bd4
 
 
9979917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d467bd4
 
 
 
 
 
 
9979917
d467bd4
 
 
 
 
 
9979917
d467bd4
9979917
d467bd4
 
9979917
 
d467bd4
9979917
d467bd4
 
 
 
 
 
 
 
 
9979917
d467bd4
 
9979917
d467bd4
 
 
 
 
 
9979917
d467bd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9979917
d467bd4
 
 
 
 
9979917
d467bd4
 
 
9979917
d467bd4
 
 
 
 
 
 
 
 
 
 
9979917
 
d467bd4
 
9979917
d467bd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9979917
d467bd4
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import gradio as gr
import torch
from neuralop.models import FNO
import matplotlib.pyplot as plt
import numpy as np
import os
import requests # <--- ADD THIS IMPORT for downloading files
from tqdm import tqdm # Optional: for a progress bar during download

# --- Configuration ---
MODEL_PATH = "fno_ckpt_single_res" # This model file still needs to be in your repo
# Zenodo direct download URL for the Navier-Stokes 2D dataset
DATASET_URL = "https://zenodo.org/record/12825163/files/navier_stokes_2d.pt?download=1"
LOCAL_DATASET_PATH = "navier_stokes_2d.pt" # Where the file will be saved locally in the Space

# --- Global Variables for Model and Data (loaded once) ---
MODEL = None
FULL_DATASET_X = None

# --- Function to Download Dataset ---
def download_file(url, local_filename):
    """Downloads a file from a URL to a local path with a progress bar."""
    if os.path.exists(local_filename):
        print(f"{local_filename} already exists. Skipping download.")
        return

    print(f"Downloading {url} to {local_filename}...")
    try:
        response = requests.get(url, stream=True)
        response.raise_for_status() # Raise an HTTPError for bad responses (4xx or 5xx)

        total_size = int(response.headers.get('content-length', 0))
        block_size = 1024 # 1 KB

        with open(local_filename, 'wb') as f:
            with tqdm(total=total_size, unit='iB', unit_scale=True, desc=local_filename) as pbar:
                for chunk in response.iter_content(chunk_size=block_size):
                    if chunk:
                        f.write(chunk)
                        pbar.update(len(chunk))
        print(f"Downloaded {local_filename} successfully.")
    except requests.exceptions.RequestException as e:
        print(f"Error downloading file: {e}")
        raise gr.Error(f"Failed to download dataset from Zenodo: {e}")


# --- 1. Model Loading Function (No change here for model) ---
def load_model():
    """Loads the pre-trained FNO model."""
    global MODEL
    if MODEL is None:
        print("Loading FNO model...")
        try:
            MODEL = torch.load(MODEL_PATH, weights_only=False, map_location='cpu')
            MODEL.eval()
            print("Model loaded successfully.")
        except Exception as e:
            print(f"Error loading model: {e}")
            raise gr.Error(f"Failed to load model: {e}")
    return MODEL

# --- 2. Dataset Loading Function (MODIFIED) ---
def load_dataset():
    """Downloads and loads the initial conditions dataset."""
    global FULL_DATASET_X
    if FULL_DATASET_X is None:
        download_file(DATASET_URL, LOCAL_DATASET_PATH) # <--- Download here!
        print("Loading dataset from local file...")
        try:
            data = torch.load(LOCAL_DATASET_PATH, map_location='cpu')
            if isinstance(data, dict) and 'x' in data:
                FULL_DATASET_X = data['x']
            elif isinstance(data, torch.Tensor):
                FULL_DATASET_X = data
            else:
                raise ValueError("Unknown dataset format or 'x' key missing.")
            print(f"Dataset loaded. Total samples: {FULL_DATASET_X.shape[0]}")
        except Exception as e:
            print(f"Error loading dataset: {e}")
            raise gr.Error(f"Failed to load dataset from local file: {e}")
    return FULL_DATASET_X

# --- 3. Inference Function for Gradio (No change) ---
def run_inference(sample_index: int):
    """
    Performs inference for a selected sample index from the dataset.
    Returns two Matplotlib figures: one for input, one for output.
    """
    model = load_model()
    dataset = load_dataset() # This will trigger download and load if not already done

    if not (0 <= sample_index < dataset.shape[0]):
        raise gr.Error(f"Sample index out of range. Please choose between 0 and {dataset.shape[0]-1}.")

    single_initial_condition = dataset[sample_index:sample_index+1, :, :].unsqueeze(1)

    print(f"Running inference for sample index {sample_index}...")
    with torch.no_grad():
        predicted_solution = model(single_initial_condition)

    input_numpy = single_initial_condition.squeeze().cpu().numpy()
    output_numpy = predicted_solution.squeeze().cpu().numpy()

    fig_input, ax_input = plt.subplots()
    im_input = ax_input.imshow(input_numpy, cmap='viridis')
    ax_input.set_title(f"Initial Condition (Sample {sample_index})")
    fig_input.colorbar(im_input, ax=ax_input, label="Vorticity")
    plt.close(fig_input)

    fig_output, ax_output = plt.subplots()
    im_output = ax_output.imshow(output_numpy, cmap='viridis')
    ax_output.set_title(f"Predicted Solution")
    fig_output.colorbar(im_output, ax=ax_output, label="Vorticity")
    plt.close(fig_output)

    return fig_input, fig_output

# --- Gradio Interface Setup (No change) ---
with gr.Blocks() as demo:
    gr.Markdown(
        """
        # Fourier Neural Operator (FNO) for Navier-Stokes Equations
        Select a sample index from the pre-loaded dataset to see the FNO's prediction
        of the vorticity field evolution.
        """
    )

    with gr.Row():
        with gr.Column():
            # Max value can be dynamic based on dataset size if needed,
            # but 9999 for 10,000 samples is correct.
            sample_input_slider = gr.Slider(
                minimum=0,
                maximum=9999,
                value=0,
                step=1,
                label="Select Sample Index"
            )
            run_button = gr.Button("Generate Solution")
        with gr.Column():
            input_image_plot = gr.Plot(label="Selected Initial Condition")
            output_image_plot = gr.Plot(label="Predicted Solution")

    run_button.click(
        fn=run_inference,
        inputs=[sample_input_slider],
        outputs=[input_image_plot, output_image_plot]
    )

    def load_initial_data_and_predict():
        load_model()
        load_dataset() # This will now download if not present
        return run_inference(0)

    demo.load(load_initial_data_and_predict, inputs=None, outputs=[input_image_plot, output_image_plot])

if __name__ == "__main__":
    demo.launch()