File size: 12,841 Bytes
1ebd84a
 
 
 
 
 
 
5cbe56c
1ebd84a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cbe56c
1ebd84a
 
5cbe56c
 
 
4858646
 
 
 
 
 
 
 
5cbe56c
 
 
1ebd84a
4858646
1ebd84a
 
 
 
 
5cbe56c
1ebd84a
5cbe56c
1ebd84a
 
5cbe56c
 
1ebd84a
 
5cbe56c
 
 
 
 
 
 
 
 
 
 
1ebd84a
 
5cbe56c
1ebd84a
5cbe56c
1ebd84a
 
5cbe56c
 
 
 
 
 
 
 
 
1ebd84a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cbe56c
 
 
1ebd84a
 
 
5cbe56c
1ebd84a
5cbe56c
1ebd84a
 
 
 
5cbe56c
 
1ebd84a
5cbe56c
 
1ebd84a
 
 
 
5cbe56c
1ebd84a
 
5cbe56c
1ebd84a
 
 
 
 
 
 
5cbe56c
1ebd84a
 
5cbe56c
1ebd84a
 
 
 
5cbe56c
1ebd84a
 
 
 
 
 
 
5cbe56c
1ebd84a
 
 
 
5cbe56c
1ebd84a
 
 
5cbe56c
1ebd84a
5cbe56c
1ebd84a
 
 
5cbe56c
1ebd84a
 
 
5cbe56c
 
1ebd84a
5cbe56c
 
1ebd84a
 
 
 
5cbe56c
1ebd84a
 
 
 
 
 
 
 
 
 
 
5cbe56c
 
 
1ebd84a
 
 
 
 
 
5cbe56c
1ebd84a
 
 
 
 
 
 
5cbe56c
1ebd84a
 
 
 
 
 
5cbe56c
1ebd84a
 
 
 
5cbe56c
1ebd84a
 
 
5cbe56c
1ebd84a
5cbe56c
 
1ebd84a
 
5cbe56c
1ebd84a
5cbe56c
 
1ebd84a
 
5cbe56c
1ebd84a
5cbe56c
1ebd84a
5cbe56c
1ebd84a
 
 
 
 
5cbe56c
1ebd84a
 
5cbe56c
 
1ebd84a
 
5cbe56c
 
 
 
 
1ebd84a
 
5cbe56c
 
 
1ebd84a
 
5cbe56c
 
 
 
 
 
 
 
 
1ebd84a
5cbe56c
 
 
 
1ebd84a
 
 
 
5cbe56c
 
1ebd84a
 
 
5cbe56c
 
1ebd84a
 
5cbe56c
 
 
 
 
1ebd84a
 
5cbe56c
 
 
1ebd84a
5cbe56c
 
 
 
 
 
 
 
 
 
 
1ebd84a
5cbe56c
 
 
 
1ebd84a
 
 
 
 
 
 
 
 
 
 
 
5cbe56c
1ebd84a
 
 
 
5cbe56c
1ebd84a
 
5cbe56c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
from PIL import Image
import os
import gc
import time
import spaces
from typing import Optional, Tuple
from huggingface_hub import hf_hub_download

# Global pipeline variables
txt2img_pipe = None
img2img_pipe = None
device = "cuda" if torch.cuda.is_available() else "cpu"

# Hugging Face model configuration
MODEL_REPO = "ajsbsd/CyberRealistic-Pony"
MODEL_FILENAME = "cyberrealisticPony_v110.safetensors"

def clear_memory():
    """Clear GPU memory"""
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    gc.collect()

def load_models():
    """Load both text2img and img2img pipelines optimized for Spaces"""
    global txt2img_pipe, img2img_pipe
    
    try:
        print("Loading CyberRealistic Pony models...")
        
        # Download model file using huggingface_hub
        print(f"Downloading model from {MODEL_REPO}...")
        model_path = hf_hub_download(
            repo_id=MODEL_REPO,
            filename=MODEL_FILENAME,
            cache_dir="/tmp/hf_cache"  # Use tmp for Spaces
        )
        print(f"Model downloaded to: {model_path}")
        
        # Load Text2Img pipeline
        if txt2img_pipe is None:
            txt2img_pipe = StableDiffusionXLPipeline.from_single_file(
                model_path,
                torch_dtype=torch.float16 if device == "cuda" else torch.float32,
                use_safetensors=True,
                variant="fp16" if device == "cuda" else None
            )
            
            # Aggressive memory optimizations for Spaces
            txt2img_pipe.enable_attention_slicing()
            txt2img_pipe.enable_vae_slicing()
            
            if device == "cuda":
                txt2img_pipe.enable_model_cpu_offload()
                txt2img_pipe.enable_sequential_cpu_offload()
            else:
                txt2img_pipe = txt2img_pipe.to(device)
        
        # Share components for Img2Img to save memory
        if img2img_pipe is None:
            img2img_pipe = StableDiffusionXLImg2ImgPipeline(
                vae=txt2img_pipe.vae,
                text_encoder=txt2img_pipe.text_encoder,
                text_encoder_2=txt2img_pipe.text_encoder_2,
                tokenizer=txt2img_pipe.tokenizer,
                tokenizer_2=txt2img_pipe.tokenizer_2,
                unet=txt2img_pipe.unet,
                scheduler=txt2img_pipe.scheduler,
            )
            
            # Same optimizations
            img2img_pipe.enable_attention_slicing()
            img2img_pipe.enable_vae_slicing()
            
            if device == "cuda":
                img2img_pipe.enable_model_cpu_offload()
                img2img_pipe.enable_sequential_cpu_offload()
        
        print("Models loaded successfully!")
        return True
        
    except Exception as e:
        print(f"Error loading models: {e}")
        return False

def enhance_prompt(prompt: str, add_quality_tags: bool = True) -> str:
    """Enhance prompt with Pony-style tags"""
    if not prompt.strip():
        return prompt
        
    if prompt.startswith("score_") or not add_quality_tags:
        return prompt
        
    quality_tags = "score_9, score_8_up, score_7_up, masterpiece, best quality, highly detailed"
    return f"{quality_tags}, {prompt}"

def validate_dimensions(width: int, height: int) -> Tuple[int, int]:
    """Ensure dimensions are valid for SDXL"""
    width = ((width + 63) // 64) * 64
    height = ((height + 63) // 64) * 64
    
    # More conservative limits for Spaces
    width = max(512, min(1024, width))
    height = max(512, min(1024, height))
    
    return width, height

@spaces.GPU(duration=60)  # GPU decorator for Spaces
def generate_txt2img(prompt, negative_prompt, num_steps, guidance_scale, width, height, seed, add_quality_tags):
    """Generate image from text prompt with Spaces GPU support"""
    global txt2img_pipe
    
    if not prompt.strip():
        return None, "Please enter a prompt"
    
    # Lazy load models
    if txt2img_pipe is None:
        if not load_models():
            return None, "Failed to load models. Please try again."
    
    try:
        clear_memory()
        
        # Validate dimensions
        width, height = validate_dimensions(width, height)
        
        # Set seed
        generator = None
        if seed != -1:
            generator = torch.Generator(device=device).manual_seed(int(seed))
        
        # Enhance prompt
        enhanced_prompt = enhance_prompt(prompt, add_quality_tags)
        
        print(f"Generating: {enhanced_prompt[:100]}...")
        start_time = time.time()
        
        # Generate with lower memory usage
        with torch.no_grad():
            result = txt2img_pipe(
                prompt=enhanced_prompt,
                negative_prompt=negative_prompt or "",
                num_inference_steps=min(int(num_steps), 30),  # Limit steps for Spaces
                guidance_scale=float(guidance_scale),
                width=width,
                height=height,
                generator=generator
            )
        
        generation_time = time.time() - start_time
        status = f"Generated in {generation_time:.1f}s ({width}x{height})"
        
        return result.images[0], status
        
    except Exception as e:
        return None, f"Generation failed: {str(e)}"
    finally:
        clear_memory()

@spaces.GPU(duration=60)  # GPU decorator for Spaces
def generate_img2img(input_image, prompt, negative_prompt, num_steps, guidance_scale, strength, seed, add_quality_tags):
    """Generate image from input image + text prompt with Spaces GPU support"""
    global img2img_pipe
    
    if input_image is None:
        return None, "Please upload an input image"
    
    if not prompt.strip():
        return None, "Please enter a prompt"
    
    # Lazy load models
    if img2img_pipe is None:
        if not load_models():
            return None, "Failed to load models. Please try again."
    
    try:
        clear_memory()
        
        # Set seed
        generator = None
        if seed != -1:
            generator = torch.Generator(device=device).manual_seed(int(seed))
        
        # Enhance prompt
        enhanced_prompt = enhance_prompt(prompt, add_quality_tags)
        
        # Process input image
        if isinstance(input_image, Image.Image):
            if input_image.mode != 'RGB':
                input_image = input_image.convert('RGB')
            
            # Conservative resize for Spaces
            max_size = 768
            input_image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
            
            w, h = input_image.size
            w, h = validate_dimensions(w, h)
            input_image = input_image.resize((w, h), Image.Resampling.LANCZOS)
        
        print(f"Transforming: {enhanced_prompt[:100]}...")
        start_time = time.time()
        
        with torch.no_grad():
            result = img2img_pipe(
                prompt=enhanced_prompt,
                negative_prompt=negative_prompt or "",
                image=input_image,
                num_inference_steps=min(int(num_steps), 30),  # Limit steps
                guidance_scale=float(guidance_scale),
                strength=float(strength),
                generator=generator
            )
        
        generation_time = time.time() - start_time
        status = f"Transformed in {generation_time:.1f}s (Strength: {strength})"
        
        return result.images[0], status
        
    except Exception as e:
        return None, f"Transformation failed: {str(e)}"
    finally:
        clear_memory()

# Simplified negative prompt for better performance
DEFAULT_NEGATIVE = """
(low quality:1.3), (worst quality:1.3), (bad quality:1.2), blurry, noisy, ugly, deformed, 
(text, watermark:1.4), (extra limbs:1.3), (bad hands:1.3), (bad anatomy:1.2)
"""

# Gradio interface optimized for Spaces
with gr.Blocks(
    title="CyberRealistic Pony Generator", 
    theme=gr.themes.Soft()
) as demo:
    gr.Markdown("""
    # 🎨 CyberRealistic Pony Image Generator
    
    Generate high-quality images using the CyberRealistic Pony SDXL model.
    
    ⚠️ **Note**: First generation may take longer as the model loads. GPU time is limited on Spaces.
    """)
    
    with gr.Tabs():
        with gr.TabItem("🎨 Text to Image"):
            with gr.Row():
                with gr.Column():
                    txt2img_prompt = gr.Textbox(
                        label="Prompt",
                        placeholder="beautiful landscape, mountains, sunset",
                        lines=2
                    )
                    
                    with gr.Accordion("Advanced Settings", open=False):
                        txt2img_negative = gr.Textbox(
                            label="Negative Prompt",
                            value=DEFAULT_NEGATIVE,
                            lines=2
                        )
                        
                        txt2img_quality_tags = gr.Checkbox(
                            label="Add Quality Tags",
                            value=True
                        )
                        
                        with gr.Row():
                            txt2img_steps = gr.Slider(10, 30, 20, step=1, label="Steps")
                            txt2img_guidance = gr.Slider(1.0, 15.0, 7.5, step=0.5, label="Guidance")
                        
                        with gr.Row():
                            txt2img_width = gr.Slider(512, 1024, 768, step=64, label="Width")
                            txt2img_height = gr.Slider(512, 1024, 768, step=64, label="Height")
                        
                        txt2img_seed = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
                    
                    txt2img_btn = gr.Button("🎨 Generate", variant="primary", size="lg")
                
                with gr.Column():
                    txt2img_output = gr.Image(label="Generated Image", height=400)
                    txt2img_status = gr.Textbox(label="Status", interactive=False)
        
        with gr.TabItem("πŸ–ΌοΈ Image to Image"):
            with gr.Row():
                with gr.Column():
                    img2img_input = gr.Image(label="Input Image", type="pil", height=250)
                    
                    img2img_prompt = gr.Textbox(
                        label="Prompt",
                        placeholder="digital painting style, vibrant colors",
                        lines=2
                    )
                    
                    with gr.Accordion("Advanced Settings", open=False):
                        img2img_negative = gr.Textbox(
                            label="Negative Prompt",
                            value=DEFAULT_NEGATIVE,
                            lines=2
                        )
                        
                        img2img_quality_tags = gr.Checkbox(
                            label="Add Quality Tags",
                            value=True
                        )
                        
                        with gr.Row():
                            img2img_steps = gr.Slider(10, 30, 20, step=1, label="Steps")
                            img2img_guidance = gr.Slider(1.0, 15.0, 7.5, step=0.5, label="Guidance")
                        
                        img2img_strength = gr.Slider(
                            0.1, 1.0, 0.75, step=0.05, 
                            label="Strength (Higher = more creative)"
                        )
                        
                        img2img_seed = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
                    
                    img2img_btn = gr.Button("πŸ–ΌοΈ Transform", variant="primary", size="lg")
                
                with gr.Column():
                    img2img_output = gr.Image(label="Generated Image", height=400)
                    img2img_status = gr.Textbox(label="Status", interactive=False)
    
    # Event handlers
    txt2img_btn.click(
        fn=generate_txt2img,
        inputs=[txt2img_prompt, txt2img_negative, txt2img_steps, txt2img_guidance, 
                txt2img_width, txt2img_height, txt2img_seed, txt2img_quality_tags],
        outputs=[txt2img_output, txt2img_status]
    )
    
    img2img_btn.click(
        fn=generate_img2img,
        inputs=[img2img_input, img2img_prompt, img2img_negative, img2img_steps, img2img_guidance, 
                img2img_strength, img2img_seed, img2img_quality_tags],
        outputs=[img2img_output, img2img_status]
    )

print(f"πŸš€ CyberRealistic Pony Generator initialized on {device}")

if __name__ == "__main__":
    demo.launch()