ajitrajasekharan commited on
Commit
90a2a07
·
1 Parent(s): 9276c0d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -27
app.py CHANGED
@@ -108,9 +108,6 @@ def get_pos_arr(input_text,display_area):
108
 
109
  def perform_inference(text,display_area):
110
 
111
- if (st.session_state['bio_model'] is None):
112
- display_area.text("Loading model 1 of 3. Bio model...")
113
- st.session_state['bio_model'] = bd.BatchInference("bio/desc_a100_config.json",'ajitrajasekharan/biomedical',False,False,DEFAULT_TOP_K,True,True, "bio/","bio/a100_labels.txt",False)
114
 
115
  if (st.session_state['phi_model'] is None):
116
  display_area.text("Loading model 2 of 3. PHI model...")
@@ -122,32 +119,22 @@ def perform_inference(text,display_area):
122
  else:
123
  pos_arr = None
124
 
125
- if (st.session_state['ner_bio'] is None):
126
- display_area.text("Initializing BIO module...")
127
- st.session_state['ner_bio'] = ner.UnsupNER("bio/ner_a100_config.json")
128
 
129
  if (st.session_state['ner_phi'] is None):
130
  display_area.text("Initializing PHI module...")
131
  st.session_state['ner_phi'] = ner.UnsupNER("bbc/ner_bbc_config.json")
132
 
133
- if (st.session_state['aggr'] is None):
134
- display_area.text("Initializing Aggregation modeule...")
135
- st.session_state['aggr'] = aggr.AggregateNER("./ensemble_config.json")
136
 
137
 
138
 
139
- display_area.text("Getting results from BIO model...")
140
- bio_descs = st.session_state['bio_model'].get_descriptors(text,pos_arr)
141
  display_area.text("Getting results from PHI model...")
142
  phi_results = st.session_state['phi_model'].get_descriptors(text,pos_arr)
143
  display_area.text("Aggregating BIO & PHI results...")
144
- bio_ner = st.session_state['ner_bio'].tag_sentence_service(text,bio_descs)
145
- phi_ner = st.session_state['ner_phi'].tag_sentence_service(text,phi_results)
146
 
147
- combined_arr = [json.loads(bio_ner),json.loads(phi_ner)]
148
 
149
- aggregate_results = st.session_state['aggr'].fetch_all(text,combined_arr)
150
- return aggregate_results
151
 
152
 
153
  sent_arr = [
@@ -212,19 +199,12 @@ def main():
212
 
213
  init_session_states()
214
 
215
- st.markdown("<h3 style='text-align: center;'>NER using pretrained models with <a href='https://ajitrajasekharan.github.io/2021/01/02/my-first-post.html'>no fine tuning</a></h3>", unsafe_allow_html=True)
216
- #st.markdown("""
217
- #<h3 style="font-size:16px; color: #ff0000; text-align: center"><b>App under construction... (not in working condition yet)</b></h3>
218
- #""", unsafe_allow_html=True)
219
 
220
 
221
- st.markdown("""
222
- <p style="text-align:center;"><img src="https://ajitrajasekharan.github.io/images/1.png" width="700"></p>
223
- <br/>
224
- <br/>
225
- """, unsafe_allow_html=True)
226
 
227
- st.write("This app uses 3 models. Two Pretrained Bert models (**no fine tuning**) and a POS tagger")
228
 
229
 
230
  with st.form('my_form'):
@@ -254,7 +234,7 @@ def main():
254
  # )
255
 
256
  st.markdown("""
257
- <small style="font-size:16px; color: #7f7f7f; text-align: left"><br/><br/>Models used: <br/>(1) <a href='https://huggingface.co/ajitrajasekharan/biomedical' target='_blank'>Biomedical model</a> pretrained on Pubmed,Clinical trials and BookCorpus subset.<br/>(2) Bert-base-cased (for PHI entities - Person/location/organization etc.)<br/>(3) Flair POS tagger</small>
258
  #""", unsafe_allow_html=True)
259
  st.markdown("""
260
  <h3 style="font-size:16px; color: #9f9f9f; text-align: center"><b> <a href='https://huggingface.co/spaces/ajitrajasekharan/Qualitative-pretrained-model-evaluation' target='_blank'>App link to examine pretrained models</a> used to perform NER without fine tuning</b></h3>
 
108
 
109
  def perform_inference(text,display_area):
110
 
 
 
 
111
 
112
  if (st.session_state['phi_model'] is None):
113
  display_area.text("Loading model 2 of 3. PHI model...")
 
119
  else:
120
  pos_arr = None
121
 
 
 
 
122
 
123
  if (st.session_state['ner_phi'] is None):
124
  display_area.text("Initializing PHI module...")
125
  st.session_state['ner_phi'] = ner.UnsupNER("bbc/ner_bbc_config.json")
126
 
 
 
 
127
 
128
 
129
 
130
+
 
131
  display_area.text("Getting results from PHI model...")
132
  phi_results = st.session_state['phi_model'].get_descriptors(text,pos_arr)
133
  display_area.text("Aggregating BIO & PHI results...")
 
 
134
 
135
+ phi_ner = st.session_state['ner_phi'].tag_sentence_service(text,phi_results)
136
 
137
+ return phi_ner
 
138
 
139
 
140
  sent_arr = [
 
199
 
200
  init_session_states()
201
 
202
+ st.markdown("<h3 style='text-align: center;'>NER using pretrained models with <a href='https://ajitrajasekharan.github.io/2021/01/02/my-first-post.html'>no fine tuning</a><br/><br/></h3>", unsafe_allow_html=True)
203
+
 
 
204
 
205
 
 
 
 
 
 
206
 
207
+ st.write("This app uses 2 models. Bert-base-cased(**no fine tuning**) and a POS tagger")
208
 
209
 
210
  with st.form('my_form'):
 
234
  # )
235
 
236
  st.markdown("""
237
+ <small style="font-size:16px; color: #7f7f7f; text-align: left"><br/><br/>Models used: <br/>(1) Bert-base-cased (for PHI entities - Person/location/organization etc.)<br/>(2) Flair POS tagger</small>
238
  #""", unsafe_allow_html=True)
239
  st.markdown("""
240
  <h3 style="font-size:16px; color: #9f9f9f; text-align: center"><b> <a href='https://huggingface.co/spaces/ajitrajasekharan/Qualitative-pretrained-model-evaluation' target='_blank'>App link to examine pretrained models</a> used to perform NER without fine tuning</b></h3>