Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,16 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
| 3 |
from transformers.image_utils import load_image
|
| 4 |
from threading import Thread
|
| 5 |
import time
|
| 6 |
import torch
|
| 7 |
-
import
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Fine-tuned for OCR-based tasks from Qwen's [ Qwen/Qwen2-VL-2B-Instruct ]
|
| 10 |
-
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
| 11 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 12 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 13 |
MODEL_ID,
|
|
@@ -15,31 +18,65 @@ model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
| 15 |
torch_dtype=torch.float16
|
| 16 |
).to("cuda").eval()
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
@spaces.GPU
|
| 19 |
def model_inference(input_dict, history):
|
| 20 |
text = input_dict["text"]
|
| 21 |
files = input_dict["files"]
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
else:
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
| 37 |
|
| 38 |
# Validate input
|
| 39 |
-
if text == "" and not
|
| 40 |
gr.Error("Please input a query and optionally image(s) or video(s).")
|
| 41 |
return
|
| 42 |
-
if text == "" and
|
| 43 |
gr.Error("Please input a text query along with the image(s) or video(s).")
|
| 44 |
return
|
| 45 |
|
|
@@ -48,8 +85,7 @@ def model_inference(input_dict, history):
|
|
| 48 |
{
|
| 49 |
"role": "user",
|
| 50 |
"content": [
|
| 51 |
-
*[{"type":
|
| 52 |
-
*[{"type": "video", "video": video} for video in videos],
|
| 53 |
{"type": "text", "text": text},
|
| 54 |
],
|
| 55 |
}
|
|
@@ -59,8 +95,8 @@ def model_inference(input_dict, history):
|
|
| 59 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 60 |
inputs = processor(
|
| 61 |
text=[prompt],
|
| 62 |
-
images=
|
| 63 |
-
videos=
|
| 64 |
return_tensors="pt",
|
| 65 |
padding=True,
|
| 66 |
).to("cuda")
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
| 4 |
from transformers.image_utils import load_image
|
| 5 |
from threading import Thread
|
| 6 |
import time
|
| 7 |
import torch
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import uuid
|
| 10 |
+
import io
|
| 11 |
|
| 12 |
# Fine-tuned for OCR-based tasks from Qwen's [ Qwen/Qwen2-VL-2B-Instruct ]
|
| 13 |
+
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
| 14 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 15 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 16 |
MODEL_ID,
|
|
|
|
| 18 |
torch_dtype=torch.float16
|
| 19 |
).to("cuda").eval()
|
| 20 |
|
| 21 |
+
# Supported media extensions
|
| 22 |
+
image_extensions = Image.registered_extensions()
|
| 23 |
+
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
|
| 24 |
+
|
| 25 |
+
def identify_and_save_blob(blob_path):
|
| 26 |
+
"""Identifies if the blob is an image or video and saves it accordingly."""
|
| 27 |
+
try:
|
| 28 |
+
with open(blob_path, 'rb') as file:
|
| 29 |
+
blob_content = file.read()
|
| 30 |
+
|
| 31 |
+
# Try to identify if it's an image
|
| 32 |
+
try:
|
| 33 |
+
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
|
| 34 |
+
extension = ".png" # Default to PNG for saving
|
| 35 |
+
media_type = "image"
|
| 36 |
+
except (IOError, SyntaxError):
|
| 37 |
+
# If it's not a valid image, assume it's a video
|
| 38 |
+
extension = ".mp4" # Default to MP4 for saving
|
| 39 |
+
media_type = "video"
|
| 40 |
+
|
| 41 |
+
# Create a unique filename
|
| 42 |
+
filename = f"temp_{uuid.uuid4()}_media{extension}"
|
| 43 |
+
with open(filename, "wb") as f:
|
| 44 |
+
f.write(blob_content)
|
| 45 |
+
|
| 46 |
+
return filename, media_type
|
| 47 |
+
|
| 48 |
+
except FileNotFoundError:
|
| 49 |
+
raise ValueError(f"The file {blob_path} was not found.")
|
| 50 |
+
except Exception as e:
|
| 51 |
+
raise ValueError(f"An error occurred while processing the file: {e}")
|
| 52 |
+
|
| 53 |
@spaces.GPU
|
| 54 |
def model_inference(input_dict, history):
|
| 55 |
text = input_dict["text"]
|
| 56 |
files = input_dict["files"]
|
| 57 |
|
| 58 |
+
# Process media files (images or videos)
|
| 59 |
+
media_paths = []
|
| 60 |
+
media_types = []
|
| 61 |
+
for file in files:
|
| 62 |
+
if file.endswith(tuple([i for i, f in image_extensions.items()])):
|
| 63 |
+
media_type = "image"
|
| 64 |
+
elif file.endswith(video_extensions):
|
| 65 |
+
media_type = "video"
|
| 66 |
else:
|
| 67 |
+
try:
|
| 68 |
+
file, media_type = identify_and_save_blob(file)
|
| 69 |
+
except Exception as e:
|
| 70 |
+
gr.Error(f"Unsupported media type: {e}")
|
| 71 |
+
return
|
| 72 |
+
media_paths.append(file)
|
| 73 |
+
media_types.append(media_type)
|
| 74 |
|
| 75 |
# Validate input
|
| 76 |
+
if text == "" and not media_paths:
|
| 77 |
gr.Error("Please input a query and optionally image(s) or video(s).")
|
| 78 |
return
|
| 79 |
+
if text == "" and media_paths:
|
| 80 |
gr.Error("Please input a text query along with the image(s) or video(s).")
|
| 81 |
return
|
| 82 |
|
|
|
|
| 85 |
{
|
| 86 |
"role": "user",
|
| 87 |
"content": [
|
| 88 |
+
*[{"type": media_type, media_type: media_path} for media_path, media_type in zip(media_paths, media_types)],
|
|
|
|
| 89 |
{"type": "text", "text": text},
|
| 90 |
],
|
| 91 |
}
|
|
|
|
| 95 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 96 |
inputs = processor(
|
| 97 |
text=[prompt],
|
| 98 |
+
images=[load_image(path) for path, media_type in zip(media_paths, media_types) if media_type == "image"],
|
| 99 |
+
videos=[path for path, media_type in zip(media_paths, media_types) if media_type == "video"],
|
| 100 |
return_tensors="pt",
|
| 101 |
padding=True,
|
| 102 |
).to("cuda")
|