Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import random | |
| import uuid | |
| import json | |
| import time | |
| import asyncio | |
| from threading import Thread | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import cv2 | |
| from transformers import ( | |
| Qwen2VLForConditionalGeneration, | |
| Qwen2_5_VLForConditionalGeneration, | |
| AutoModelForImageTextToText, | |
| AutoProcessor, | |
| TextIteratorStreamer, | |
| ) | |
| from transformers.image_utils import load_image | |
| # Constants for text generation | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| # Load RolmOCR | |
| MODEL_ID_M = "reducto/RolmOCR" | |
| processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) | |
| model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_M, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # Load Qwen2-VL-OCR-2B-Instruct | |
| MODEL_ID_X = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" | |
| processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True) | |
| model_x = Qwen2VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_X, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # Load Nanonets-OCR-s | |
| MODEL_ID_V = "nanonets/Nanonets-OCR-s" | |
| processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True) | |
| model_v = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_V, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # Load aya-vision-8b | |
| MODEL_ID_A = "CohereForAI/aya-vision-8b" | |
| processor_a = AutoProcessor.from_pretrained(MODEL_ID_A, trust_remote_code=True) | |
| model_a = AutoModelForImageTextToText.from_pretrained( | |
| MODEL_ID_A, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| def downsample_video(video_path): | |
| """ | |
| Downsamples the video to evenly spaced frames. | |
| Each frame is returned as a PIL image along with its timestamp. | |
| """ | |
| vidcap = cv2.VideoCapture(video_path) | |
| total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| fps = vidcap.get(cv2.CAP_PROP_FPS) | |
| frames = [] | |
| frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
| for i in frame_indices: | |
| vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| success, image = vidcap.read() | |
| if success: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| pil_image = Image.fromarray(image) | |
| timestamp = round(i / fps, 2) | |
| frames.append((pil_image, timestamp)) | |
| vidcap.release() | |
| return frames | |
| def generate_image(model_name: str, text: str, image: Image.Image, | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2): | |
| """ | |
| Generates responses using the selected model for image input. | |
| """ | |
| if model_name == "RolmOCR": | |
| processor = processor_m | |
| model = model_m | |
| elif model_name == "Qwen2-VL-OCR-2B-Instruct": | |
| processor = processor_x | |
| model = model_x | |
| elif model_name == "Nanonets-OCR-s": | |
| processor = processor_v | |
| model = model_v | |
| elif model_name == "Aya-Vision": | |
| processor = processor_a | |
| model = model_a | |
| else: | |
| yield "Invalid model selected." | |
| return | |
| if image is None: | |
| yield "Please upload an image." | |
| return | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": image}, | |
| {"type": "text", "text": text}, | |
| ] | |
| }] | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor( | |
| text=[prompt_full], | |
| images=[image], | |
| return_tensors="pt", | |
| padding=True, | |
| truncation=False, | |
| max_length=MAX_INPUT_TOKEN_LENGTH | |
| ).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer | |
| def generate_video(model_name: str, text: str, video_path: str, | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2): | |
| """ | |
| Generates responses using the selected model for video input. | |
| """ | |
| if model_name == "RolmOCR": | |
| processor = processor_m | |
| model = model_m | |
| elif model_name == "Qwen2-VL-OCR-2B-Instruct": | |
| processor = processor_x | |
| model = model_x | |
| elif model_name == "Nanonets-OCR-s": | |
| processor = processor_v | |
| model = model_v | |
| elif model_name == "Aya-Vision": | |
| processor = processor_a | |
| model = model_a | |
| else: | |
| yield "Invalid model selected." | |
| return | |
| if video_path is None: | |
| yield "Please upload a video." | |
| return | |
| frames = downsample_video(video_path) | |
| messages = [ | |
| {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
| {"role": "user", "content": [{"type": "text", "text": text}]} | |
| ] | |
| for frame in frames: | |
| image, timestamp = frame | |
| messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"}) | |
| messages[1]["content"].append({"type": "image", "image": image}) | |
| inputs = processor.apply_chat_template( | |
| messages, | |
| tokenize=True, | |
| add_generation_prompt=True, | |
| return_dict=True, | |
| return_tensors="pt", | |
| truncation=False, | |
| max_length=MAX_INPUT_TOKEN_LENGTH | |
| ).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| **inputs, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "repetition_penalty": repetition_penalty, | |
| } | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer | |
| # Define examples for image and video inference | |
| image_examples = [ | |
| ["Perform OCR on the Image.", "images/1.jpg"], | |
| ["Extract the table content", "images/2.png"] | |
| ] | |
| video_examples = [ | |
| ["Explain the Ad in Detail", "videos/1.mp4"], | |
| ["Identify the main actions in the cartoon video", "videos/2.mp4"] | |
| ] | |
| css = """ | |
| .submit-btn { | |
| background-color: #2980b9 !important; | |
| color: white !important; | |
| } | |
| .submit-btn:hover { | |
| background-color: #3498db !important; | |
| } | |
| """ | |
| # Create the Gradio Interface | |
| with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
| gr.Markdown("# **Multimodal OCR**") | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Tabs(): | |
| with gr.TabItem("Image Inference"): | |
| image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
| image_upload = gr.Image(type="pil", label="Image") | |
| image_submit = gr.Button("Submit", elem_classes="submit-btn") | |
| gr.Examples( | |
| examples=image_examples, | |
| inputs=[image_query, image_upload] | |
| ) | |
| with gr.TabItem("Video Inference"): | |
| video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
| video_upload = gr.Video(label="Video") | |
| video_submit = gr.Button("Submit", elem_classes="submit-btn") | |
| gr.Examples( | |
| examples=video_examples, | |
| inputs=[video_query, video_upload] | |
| ) | |
| with gr.Accordion("Advanced options", open=False): | |
| max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) | |
| temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) | |
| top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
| top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) | |
| repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) | |
| with gr.Column(): | |
| output = gr.Textbox(label="Output", interactive=False, lines=2, scale=2) | |
| model_choice = gr.Radio( | |
| choices=["Nanonets-OCR-s", "Qwen2-VL-OCR-2B-Instruct", "RolmOCR", "Aya-Vision"], | |
| label="Select Model", | |
| value="Nanonets-OCR-s" | |
| ) | |
| gr.Markdown("**Model Info**") | |
| gr.Markdown("> [Qwen2-VL-OCR-2B-Instruct](https://huggingface.co/prithivMLmods/Qwen2-VL-OCR-2B-Instruct): qwen2-vl-ocr-2b-instruct model is a fine-tuned version of qwen2-vl-2b-instruct, tailored for tasks that involve [messy] optical character recognition (ocr), image-to-text conversion, and math problem solving with latex formatting.") | |
| gr.Markdown("> [Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s): nanonets-ocr-s is a powerful, state-of-the-art image-to-markdown ocr model that goes far beyond traditional text extraction. it transforms documents into structured markdown with intelligent content recognition and semantic tagging.") | |
| gr.Markdown("> [RolmOCR](https://huggingface.co/reducto/RolmOCR): rolmocr, high-quality, openly available approach to parsing pdfs and other complex documents oprical character recognition. it is designed to handle a wide range of document types, including scanned documents, handwritten text, and complex layouts.") | |
| gr.Markdown("> [Aya-Vision](https://huggingface.co/CohereLabs/aya-vision-8b): cohere labs aya vision 8b is an open weights research release of an 8-billion parameter model with advanced capabilities optimized for a variety of vision-language use cases, including ocr, captioning, visual reasoning, summarization, question answering, code, and more.") | |
| image_submit.click( | |
| fn=generate_image, | |
| inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=output | |
| ) | |
| video_submit.click( | |
| fn=generate_video, | |
| inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=output | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) |