Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,447 Bytes
a26c9d1 5d63d59 a26c9d1 fc95e60 a26c9d1 6401487 92e002a a26c9d1 6401487 a26c9d1 1bfd717 6401487 a26c9d1 ed275c9 74d0e21 a26c9d1 74d0e21 5cb7bcd a26c9d1 74d0e21 a26c9d1 74d0e21 a26c9d1 74d0e21 1bfd717 3063dc5 5cb7bcd ec56362 74d0e21 5cb7bcd ec56362 6401487 74d0e21 6401487 74d0e21 6401487 74d0e21 6401487 ed275c9 74d0e21 c307af6 74d0e21 a26c9d1 74d0e21 a26c9d1 c307af6 74d0e21 a26c9d1 74d0e21 a26c9d1 74d0e21 a26c9d1 74d0e21 a26c9d1 74d0e21 a26c9d1 c307af6 74d0e21 a26c9d1 74d0e21 a26c9d1 74d0e21 c307af6 74d0e21 ed275c9 74d0e21 5d63d59 74d0e21 ed275c9 74d0e21 a26c9d1 74d0e21 9522057 a26c9d1 4168986 a26c9d1 74d0e21 a26c9d1 f4ca73a 74d0e21 a26c9d1 74d0e21 a26c9d1 74d0e21 91cda81 a26c9d1 74d0e21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import os
import uuid
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
Qwen2VLForConditionalGeneration,
Qwen2_5_VLForConditionalGeneration,
AutoModelForImageTextToText,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
# Constants
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load public OCR models
MODEL_ID_V = "nanonets/Nanonets-OCR-s"
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
model_v = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_V,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to(device).eval()
MODEL_ID_X = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID_X, trust_remote_code=True, torch_dtype=torch.bfloat16
).to(device).eval()
MODEL_ID_M = "reducto/RolmOCR"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M, trust_remote_code=True, torch_dtype=torch.bfloat16
).to(device).eval()
MODEL_ID_W = "prithivMLmods/Lh41-1042-Magellanic-7B-0711"
processor_w = AutoProcessor.from_pretrained(MODEL_ID_W, trust_remote_code=True)
model_w = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_W, trust_remote_code=True, torch_dtype=torch.bfloat16
).to(device).eval()
def downsample_video(video_path):
vidcap = cv2.VideoCapture(video_path)
total = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
for i in np.linspace(0, total - 1, 10, dtype=int):
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
ok, img = vidcap.read()
if ok:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
frames.append((Image.fromarray(img), round(i / fps, 2)))
vidcap.release()
return frames
@spaces.GPU
def generate_image(model_name, text, image, max_new_tokens, temperature, top_p, top_k, repetition_penalty):
mapping = {
"Nanonets-OCR-s": (processor_v, model_v),
"Qwen2-VL-OCR-2B": (processor_x, model_x),
"RolmOCR-7B": (processor_m, model_m),
"Lh41-1042-Magellanic-7B-0711": (processor_w, model_w),
}
if model_name not in mapping:
yield "Invalid model selected.", "Invalid model."
return
processor, model = mapping[model_name]
if image is None:
yield "Please upload an image.", ""
return
msg = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": text}]}]
prompt = processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt], images=[image], return_tensors="pt", padding=True).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
thread = Thread(target=model.generate, kwargs={**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens})
thread.start()
out = ""
for token in streamer:
out += token.replace("<|im_end|>", "")
time.sleep(0.01)
yield out, out
@spaces.GPU
def generate_video(model_name, text, video_path, max_new_tokens, temperature, top_p, top_k, repetition_penalty):
mapping = {
"Nanonets-OCR-s": (processor_v, model_v),
"Qwen2-VL-OCR-2B": (processor_x, model_x),
"RolmOCR-7B": (processor_m, model_m),
"Lh41-1042-Magellanic-7B-0711": (processor_w, model_w),
}
if model_name not in mapping:
yield "Invalid model selected.", "Invalid model."
return
processor, model = mapping[model_name]
if video_path is None:
yield "Please upload a video.", ""
return
frames = downsample_video(video_path)
messages = [{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": text}]}]
for img, ts in frames:
messages[1]["content"].append({"type": "text", "text": f"Frame {ts}:"})
messages[1]["content"].append({"type": "image", "image": img})
inputs = processor.apply_chat_template(messages, tokenize=True, add_generation_prompt=True,
return_tensors="pt").to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
thread = Thread(target=model.generate, kwargs={**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty})
thread.start()
out = ""
for token in streamer:
out += token.replace("<|im_end|>", "")
time.sleep(0.01)
yield out, out
# Examples
image_examples = [
["Extract the content", "images/4.png"],
["Explain the scene", "images/3.jpg"],
["Perform OCR on the image", "images/1.jpg"],
]
video_examples = [
["Explain the Ad in Detail", "videos/1.mp4"],
]
css = """
.submit-btn { background-color: #2980b9 !important; color: white !important; }
.submit-btn:hover { background-color: #3498db !important; }
.canvas-output { border: 2px solid #4682B4; border-radius: 10px; padding: 20px; }
"""
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown("# **Multimodal OCR**")
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Image Inference"):
img_q = gr.Textbox(label="Query Input", placeholder="Enter prompt")
img_up = gr.Image(type="pil", label="Upload Image")
img_btn = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(examples=image_examples, inputs=[img_q, img_up])
with gr.TabItem("Video Inference"):
vid_q = gr.Textbox(label="Query Input")
vid_up = gr.Video(label="Upload Video")
vid_btn = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(examples=video_examples, inputs=[vid_q, vid_up])
with gr.Column(elem_classes="canvas-output"):
gr.Markdown("## Output")
out_raw = gr.Textbox(interactive=False, lines=2, show_copy_button=True)
with gr.Accordion("Formatted Output", open=False):
out_md = gr.Markdown()
model_choice = gr.Radio(
choices=["Nanonets-OCR-s", "Qwen2-VL-OCR-2B", "RolmOCR-7B", "Lh41-1042-Magellanic-7B-0711"],
label="Select Model",
value="Nanonets-OCR-s"
)
img_btn.click(generate_image, inputs=[model_choice, img_q, img_up,
gr.Slider(1, MAX_MAX_NEW_TOKENS, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(0.1,4.0,value=0.6),
gr.Slider(0.05,1.0,value=0.9),
gr.Slider(1,1000,value=50),
gr.Slider(1.0,2.0,value=1.2)],
outputs=[out_raw, out_md])
vid_btn.click(generate_video, inputs=[model_choice, vid_q, vid_up,
gr.Slider(1, MAX_MAX_NEW_TOKENS, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(0.1,4.0,value=0.6),
gr.Slider(0.05,1.0,value=0.9),
gr.Slider(1,1000,value=50),
gr.Slider(1.0,2.0,value=1.2)],
outputs=[out_raw, out_md])
if __name__ == "__main__":
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)
|