Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
import logging | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Set page configuration | |
st.set_page_config( | |
page_title="DeepSeek Chatbot", | |
page_icon="π€", | |
layout="wide" | |
) | |
# Initialize session state for chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Sidebar for model configuration | |
st.sidebar.title("βοΈ Settings") | |
# Model selection | |
model_options = ["deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"] | |
selected_model = st.sidebar.selectbox("Select AI Model", model_options) | |
# System message input | |
system_message = st.sidebar.text_area( | |
"System Message", | |
value="You are a friendly chatbot. Provide clear and engaging responses.", | |
height=80 | |
) | |
# Chat configuration settings | |
max_tokens = st.sidebar.slider("Max Tokens", 10, 4000, 300) | |
temperature = st.sidebar.slider("Temperature", 0.1, 2.0, 0.7) | |
top_p = st.sidebar.slider("Top-p", 0.1, 1.0, 0.9) | |
# Function to query the Hugging Face API | |
def query(payload, api_url): | |
headers = {"Authorization": f"Bearer {st.secrets['HF_TOKEN']}"} | |
try: | |
response = requests.post(api_url, headers=headers, json=payload) | |
response.raise_for_status() | |
return response.json() | |
except requests.exceptions.RequestException as e: | |
logger.error(f"Request Error: {e}") | |
return None | |
# Main Chat Interface | |
st.title("π€ DeepSeek Chatbot") | |
st.write("Chat with an AI-powered assistant.") | |
# Display chat history | |
for message in st.session_state.messages: | |
role = "π§βπ» You" if message["role"] == "user" else "π€ AI" | |
st.markdown(f"**{role}:** {message['content']}") | |
# Handle user input | |
if prompt := st.chat_input("Type your message..."): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
st.markdown(f"**π§βπ» You:** {prompt}") | |
try: | |
with st.spinner("Generating response..."): | |
full_prompt = f"{system_message}\n\nUser: {prompt}\nAssistant:" | |
payload = { | |
"inputs": full_prompt, | |
"parameters": { | |
"max_new_tokens": max_tokens, | |
"temperature": temperature, | |
"top_p": top_p, | |
"return_full_text": False | |
} | |
} | |
api_url = f"https://api-inference.huggingface.co/models/{selected_model}" | |
output = query(payload, api_url) | |
if output and isinstance(output, list) and 'generated_text' in output[0]: | |
assistant_response = output[0]['generated_text'].strip() | |
assistant_response = assistant_response.replace("</think>", "").strip() | |
st.markdown(f"**π€ AI:** {assistant_response}") | |
st.session_state.messages.append({"role": "assistant", "content": assistant_response}) | |
else: | |
st.error("Unable to generate a response. Please try again.") | |
except Exception as e: | |
logger.error(f"Application Error: {str(e)}", exc_info=True) | |
st.error(f"Error: {str(e)}") | |