File size: 11,285 Bytes
381c43b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import parselmouth
from parselmouth.praat import call
import numpy as np
import math


class VoiceQualityFeatureExtractor:
    """
    A class to extract various voice quality features from audio data.

    Attributes:
        audio_arr (numpy.array): The audio array used for processing.
        orig_sr (int): The original sampling rate of the audio.

    Methods:
        extract(features_to_extract=None): Main method to extract specified voice quality features.
        extract_jitter(): Extracts measures of frequency variation (jitter).
        extract_shimmer(): Extracts measures of amplitude variation (shimmer).
        extract_hnr(): Extracts the Harmonics-to-Noise Ratio (HNR).
        extract_speech_rate(): Calculates various speech rate metrics.
        measure_speech_rate(voiceID): Helper method to perform detailed speech rate analysis.
    """
    def __init__(self, audio_arr, orig_sr):
        """
        Initializes the VoiceQualityFeatureExtractor with audio data.
        """
        self.audio_arr = audio_arr
        self.orig_sr = orig_sr

    def extract(self, features_to_extract=None):
        """
        Extracts specified voice quality features from the audio data.
        
        Args:
            features_to_extract (list of str, optional): A list of feature names to extract.
                Defaults to extracting all available features if None.

        Returns:
            dict: A dictionary containing the extracted features.
        """
        feature_funcs = {
            'jitter': self.extract_jitter,
            'shimmer': self.extract_shimmer,
            'hnr': self.extract_hnr,
            'speech_rate': self.extract_speech_rate
        }

        if features_to_extract is None:
            features_to_extract = feature_funcs.keys()

        features = {}
        for feature in features_to_extract:
            if feature in feature_funcs:
                feature_values = feature_funcs[feature]()
                if isinstance(feature_values, dict):
                    features.update(feature_values)
                else:
                    features[feature] = feature_values
        return features

    def extract_jitter(self):
        """
        Extracts jitter measures from the audio data.
        """
        try:
            snd = parselmouth.Sound(self.audio_arr, sampling_frequency=self.orig_sr)
            point_process = call(snd, "To PointProcess (periodic, cc)", 75, 500)
            jitter_local = call(point_process, "Get jitter (local)", 0, 0, 0.0001, 0.02, 1.3)
            jitter_rap = call(point_process, "Get jitter (rap)", 0, 0, 0.0001, 0.02, 1.3)
            jitter_ppq5 = call(point_process, "Get jitter (ppq5)", 0, 0, 0.0001, 0.02, 1.3)
            return {
                'jitter_local': jitter_local,
                'jitter_rap': jitter_rap,
                'jitter_ppq5': jitter_ppq5
            }
        except Exception as e:
            print(f'Error extracting jitter: {e}')
            return {
                'jitter_local': np.nan,
                'jitter_rap': np.nan,
                'jitter_ppq5': np.nan
            }

    def extract_shimmer(self):
        """
        Extracts shimmer measures from the audio data.
        """
        try:
            snd = parselmouth.Sound(self.audio_arr, sampling_frequency=self.orig_sr)
            point_process = call(snd, "To PointProcess (periodic, cc)", 75, 500)
            shimmer_local = call([snd, point_process], "Get shimmer (local)", 0, 0, 0.0001, 0.02, 1.3, 1.6)
            shimmer_apq3 = call([snd, point_process], "Get shimmer (apq3)", 0, 0, 0.0001, 0.02, 1.3, 1.6)
            shimmer_apq5 = call([snd, point_process], "Get shimmer (apq5)", 0, 0, 0.0001, 0.02, 1.3, 1.6)
            shimmer_dda = call([snd, point_process], "Get shimmer (dda)", 0, 0, 0.0001, 0.02, 1.3, 1.6)
            return {
                'shimmer_local': shimmer_local,
                'shimmer_apq3': shimmer_apq3,
                'shimmer_apq5': shimmer_apq5,
                'shimmer_dda': shimmer_dda
            }
        except Exception as e:
            print(f'Error extracting shimmer: {e}')
            return {
                'shimmer_local': np.nan,
                'shimmer_apq3': np.nan,
                'shimmer_apq5': np.nan,
                'shimmer_dda': np.nan
            }

    def extract_hnr(self):
        """
        Extracts the Harmonics-to-Noise Ratio (HNR) from the audio data.
        """
        try:
            snd = parselmouth.Sound(self.audio_arr, sampling_frequency=self.orig_sr)
            harmonicity = call(snd, "To Harmonicity (cc)", 0.01, 75, 0.1, 1.0)
            hnr = call(harmonicity, "Get mean", 0, 0)
            return {'hnr': hnr}
        except Exception as e:
            print(f'Error extracting HNR: {e}')
            return {'hnr': np.nan}
        
        
    def extract_speech_rate(self):
        """
        Calculates and extracts various metrics related to speech rate.
        """
        try:
            sound = parselmouth.Sound(self.audio_arr, sampling_frequency=self.orig_sr)
            (voicedcount, npause, originaldur, intensity_duration, speakingrate, articulationrate, asd, totalpauseduration) = self.measure_speech_rate(sound)
            return {
                'voicedcount': voicedcount,
                'npause': npause,
                'originaldur': originaldur,
                'intensity_duration': intensity_duration,
                'speakingrate': speakingrate,
                'articulationrate': articulationrate,
                'asd': asd,
                'totalpauseduration': totalpauseduration
            }
        except Exception as e:
            print(f'Error extracting speech rate: {e}')
            return {
                'voicedcount': np.nan,
                'npause': np.nan,
                'originaldur': np.nan,
                'intensity_duration': np.nan,
                'speakingrate': np.nan,
                'articulationrate': np.nan,
                'asd': np.nan,
                'totalpauseduration': np.nan
            }
    
    
    def measure_speech_rate(self, voiceID):
        """
        Performs a detailed analysis to measure various speech rate metrics from the given audio.

        This method calculates metrics like the number of voiced segments, number of pauses,
        the total original duration of the audio, the duration of voiced segments, speaking rate,
        articulation rate, average syllable duration, and the total duration of pauses.
        """
        silencedb = -25
        mindip = 2
        minpause = 0.3
        
        sound = parselmouth.Sound(voiceID)
        originaldur = sound.get_total_duration()
        intensity = sound.to_intensity(50)
        start = call(intensity, "Get time from frame number", 1)
        nframes = call(intensity, "Get number of frames")
        end = call(intensity, "Get time from frame number", nframes)
        min_intensity = call(intensity, "Get minimum", 0, 0, "Parabolic")
        max_intensity = call(intensity, "Get maximum", 0, 0, "Parabolic")

        # get .99 quantile to get maximum (without influence of non-speech sound bursts)
        max_99_intensity = call(intensity, "Get quantile", 0, 0, 0.99)

        # estimate Intensity threshold
        threshold = max_99_intensity + silencedb
        threshold2 = max_intensity - max_99_intensity
        threshold3 = silencedb - threshold2
        if threshold < min_intensity:
            threshold = min_intensity

        # get pauses (silences) and speakingtime
        textgrid = call(intensity, "To TextGrid (silences)", threshold3, minpause, 0.1, "silent", "sounding")
        silencetier = call(textgrid, "Extract tier", 1)

        silencetable = call(silencetier, "Down to TableOfReal", "sounding")
        npauses = call(silencetable, "Get number of rows")

        speakingtot = 0
        for ipause in range(npauses):
            pause = ipause + 1
            beginsound = call(silencetable, "Get value", pause, 1)
            endsound = call(silencetable, "Get value", pause, 2)
            speakingdur = endsound - beginsound
            speakingtot += speakingdur
        total_pause_duration = originaldur - speakingtot

        intensity_matrix = call(intensity, "Down to Matrix")
        sound_from_intensity_matrix = call(intensity_matrix, "To Sound (slice)", 1)
        intensity_duration = call(sound_from_intensity_matrix, "Get total duration")
        intensity_max = call(sound_from_intensity_matrix, "Get maximum", 0, 0, "Parabolic")
        point_process = call(sound_from_intensity_matrix, "To PointProcess (extrema)", "Left", "yes", "no", "Sinc70")
        numpeaks = call(point_process, "Get number of points")
        t = [call(point_process, "Get time from index", i + 1) for i in range(numpeaks)]

        timepeaks = []
        peakcount = 0
        intensities = []
        for i in range(numpeaks):
            value = call(sound_from_intensity_matrix, "Get value at time", t[i], "Cubic")
            if value > threshold:
                peakcount += 1
                intensities.append(value)
                timepeaks.append(t[i])

        validpeakcount = 0
        currenttime = timepeaks[0]
        currentint = intensities[0]
        validtime = []

        for p in range(peakcount - 1):
            following = p + 1
            followingtime = timepeaks[p + 1]
            dip = call(intensity, "Get minimum", currenttime, timepeaks[p + 1], "None")
            diffint = abs(currentint - dip)
            if diffint > mindip:
                validpeakcount += 1
                validtime.append(timepeaks[p])
            currenttime = timepeaks[following]
            currentint = call(intensity, "Get value at time", timepeaks[following], "Cubic")

        pitch = sound.to_pitch_ac(0.02, 30, 4, False, 0.03, 0.25, 0.01, 0.35, 0.25, 450)
        voicedcount = 0
        voicedpeak = []

        for time in range(validpeakcount):
            querytime = validtime[time]
            whichinterval = call(textgrid, "Get interval at time", 1, querytime)
            whichlabel = call(textgrid, "Get label of interval", 1, whichinterval)
            value = pitch.get_value_at_time(querytime) 
            if not math.isnan(value):
                if whichlabel == "sounding":
                    voicedcount += 1
                    voicedpeak.append(validtime[time])

        timecorrection = originaldur / intensity_duration
        call(textgrid, "Insert point tier", 1, "syllables")
        for i in range(len(voicedpeak)):
            position = (voicedpeak[i] * timecorrection)
            call(textgrid, "Insert point", 1, position, "")

        speakingrate = voicedcount / originaldur
        
        # Handling division by zero for articulationrate
        if speakingtot != 0:
            articulationrate = voicedcount / speakingtot
        else:
            articulationrate = float('nan')

        # Handling division by zero for asd
        if voicedcount != 0:
            asd = speakingtot / voicedcount
        else:
            asd = float('nan')  
            
        npause = npauses - 1

        return voicedcount, npause, originaldur, intensity_duration, speakingrate, articulationrate, asd, total_pause_duration