Spaces:
Runtime error
Runtime error
File size: 11,285 Bytes
381c43b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import parselmouth
from parselmouth.praat import call
import numpy as np
import math
class VoiceQualityFeatureExtractor:
"""
A class to extract various voice quality features from audio data.
Attributes:
audio_arr (numpy.array): The audio array used for processing.
orig_sr (int): The original sampling rate of the audio.
Methods:
extract(features_to_extract=None): Main method to extract specified voice quality features.
extract_jitter(): Extracts measures of frequency variation (jitter).
extract_shimmer(): Extracts measures of amplitude variation (shimmer).
extract_hnr(): Extracts the Harmonics-to-Noise Ratio (HNR).
extract_speech_rate(): Calculates various speech rate metrics.
measure_speech_rate(voiceID): Helper method to perform detailed speech rate analysis.
"""
def __init__(self, audio_arr, orig_sr):
"""
Initializes the VoiceQualityFeatureExtractor with audio data.
"""
self.audio_arr = audio_arr
self.orig_sr = orig_sr
def extract(self, features_to_extract=None):
"""
Extracts specified voice quality features from the audio data.
Args:
features_to_extract (list of str, optional): A list of feature names to extract.
Defaults to extracting all available features if None.
Returns:
dict: A dictionary containing the extracted features.
"""
feature_funcs = {
'jitter': self.extract_jitter,
'shimmer': self.extract_shimmer,
'hnr': self.extract_hnr,
'speech_rate': self.extract_speech_rate
}
if features_to_extract is None:
features_to_extract = feature_funcs.keys()
features = {}
for feature in features_to_extract:
if feature in feature_funcs:
feature_values = feature_funcs[feature]()
if isinstance(feature_values, dict):
features.update(feature_values)
else:
features[feature] = feature_values
return features
def extract_jitter(self):
"""
Extracts jitter measures from the audio data.
"""
try:
snd = parselmouth.Sound(self.audio_arr, sampling_frequency=self.orig_sr)
point_process = call(snd, "To PointProcess (periodic, cc)", 75, 500)
jitter_local = call(point_process, "Get jitter (local)", 0, 0, 0.0001, 0.02, 1.3)
jitter_rap = call(point_process, "Get jitter (rap)", 0, 0, 0.0001, 0.02, 1.3)
jitter_ppq5 = call(point_process, "Get jitter (ppq5)", 0, 0, 0.0001, 0.02, 1.3)
return {
'jitter_local': jitter_local,
'jitter_rap': jitter_rap,
'jitter_ppq5': jitter_ppq5
}
except Exception as e:
print(f'Error extracting jitter: {e}')
return {
'jitter_local': np.nan,
'jitter_rap': np.nan,
'jitter_ppq5': np.nan
}
def extract_shimmer(self):
"""
Extracts shimmer measures from the audio data.
"""
try:
snd = parselmouth.Sound(self.audio_arr, sampling_frequency=self.orig_sr)
point_process = call(snd, "To PointProcess (periodic, cc)", 75, 500)
shimmer_local = call([snd, point_process], "Get shimmer (local)", 0, 0, 0.0001, 0.02, 1.3, 1.6)
shimmer_apq3 = call([snd, point_process], "Get shimmer (apq3)", 0, 0, 0.0001, 0.02, 1.3, 1.6)
shimmer_apq5 = call([snd, point_process], "Get shimmer (apq5)", 0, 0, 0.0001, 0.02, 1.3, 1.6)
shimmer_dda = call([snd, point_process], "Get shimmer (dda)", 0, 0, 0.0001, 0.02, 1.3, 1.6)
return {
'shimmer_local': shimmer_local,
'shimmer_apq3': shimmer_apq3,
'shimmer_apq5': shimmer_apq5,
'shimmer_dda': shimmer_dda
}
except Exception as e:
print(f'Error extracting shimmer: {e}')
return {
'shimmer_local': np.nan,
'shimmer_apq3': np.nan,
'shimmer_apq5': np.nan,
'shimmer_dda': np.nan
}
def extract_hnr(self):
"""
Extracts the Harmonics-to-Noise Ratio (HNR) from the audio data.
"""
try:
snd = parselmouth.Sound(self.audio_arr, sampling_frequency=self.orig_sr)
harmonicity = call(snd, "To Harmonicity (cc)", 0.01, 75, 0.1, 1.0)
hnr = call(harmonicity, "Get mean", 0, 0)
return {'hnr': hnr}
except Exception as e:
print(f'Error extracting HNR: {e}')
return {'hnr': np.nan}
def extract_speech_rate(self):
"""
Calculates and extracts various metrics related to speech rate.
"""
try:
sound = parselmouth.Sound(self.audio_arr, sampling_frequency=self.orig_sr)
(voicedcount, npause, originaldur, intensity_duration, speakingrate, articulationrate, asd, totalpauseduration) = self.measure_speech_rate(sound)
return {
'voicedcount': voicedcount,
'npause': npause,
'originaldur': originaldur,
'intensity_duration': intensity_duration,
'speakingrate': speakingrate,
'articulationrate': articulationrate,
'asd': asd,
'totalpauseduration': totalpauseduration
}
except Exception as e:
print(f'Error extracting speech rate: {e}')
return {
'voicedcount': np.nan,
'npause': np.nan,
'originaldur': np.nan,
'intensity_duration': np.nan,
'speakingrate': np.nan,
'articulationrate': np.nan,
'asd': np.nan,
'totalpauseduration': np.nan
}
def measure_speech_rate(self, voiceID):
"""
Performs a detailed analysis to measure various speech rate metrics from the given audio.
This method calculates metrics like the number of voiced segments, number of pauses,
the total original duration of the audio, the duration of voiced segments, speaking rate,
articulation rate, average syllable duration, and the total duration of pauses.
"""
silencedb = -25
mindip = 2
minpause = 0.3
sound = parselmouth.Sound(voiceID)
originaldur = sound.get_total_duration()
intensity = sound.to_intensity(50)
start = call(intensity, "Get time from frame number", 1)
nframes = call(intensity, "Get number of frames")
end = call(intensity, "Get time from frame number", nframes)
min_intensity = call(intensity, "Get minimum", 0, 0, "Parabolic")
max_intensity = call(intensity, "Get maximum", 0, 0, "Parabolic")
# get .99 quantile to get maximum (without influence of non-speech sound bursts)
max_99_intensity = call(intensity, "Get quantile", 0, 0, 0.99)
# estimate Intensity threshold
threshold = max_99_intensity + silencedb
threshold2 = max_intensity - max_99_intensity
threshold3 = silencedb - threshold2
if threshold < min_intensity:
threshold = min_intensity
# get pauses (silences) and speakingtime
textgrid = call(intensity, "To TextGrid (silences)", threshold3, minpause, 0.1, "silent", "sounding")
silencetier = call(textgrid, "Extract tier", 1)
silencetable = call(silencetier, "Down to TableOfReal", "sounding")
npauses = call(silencetable, "Get number of rows")
speakingtot = 0
for ipause in range(npauses):
pause = ipause + 1
beginsound = call(silencetable, "Get value", pause, 1)
endsound = call(silencetable, "Get value", pause, 2)
speakingdur = endsound - beginsound
speakingtot += speakingdur
total_pause_duration = originaldur - speakingtot
intensity_matrix = call(intensity, "Down to Matrix")
sound_from_intensity_matrix = call(intensity_matrix, "To Sound (slice)", 1)
intensity_duration = call(sound_from_intensity_matrix, "Get total duration")
intensity_max = call(sound_from_intensity_matrix, "Get maximum", 0, 0, "Parabolic")
point_process = call(sound_from_intensity_matrix, "To PointProcess (extrema)", "Left", "yes", "no", "Sinc70")
numpeaks = call(point_process, "Get number of points")
t = [call(point_process, "Get time from index", i + 1) for i in range(numpeaks)]
timepeaks = []
peakcount = 0
intensities = []
for i in range(numpeaks):
value = call(sound_from_intensity_matrix, "Get value at time", t[i], "Cubic")
if value > threshold:
peakcount += 1
intensities.append(value)
timepeaks.append(t[i])
validpeakcount = 0
currenttime = timepeaks[0]
currentint = intensities[0]
validtime = []
for p in range(peakcount - 1):
following = p + 1
followingtime = timepeaks[p + 1]
dip = call(intensity, "Get minimum", currenttime, timepeaks[p + 1], "None")
diffint = abs(currentint - dip)
if diffint > mindip:
validpeakcount += 1
validtime.append(timepeaks[p])
currenttime = timepeaks[following]
currentint = call(intensity, "Get value at time", timepeaks[following], "Cubic")
pitch = sound.to_pitch_ac(0.02, 30, 4, False, 0.03, 0.25, 0.01, 0.35, 0.25, 450)
voicedcount = 0
voicedpeak = []
for time in range(validpeakcount):
querytime = validtime[time]
whichinterval = call(textgrid, "Get interval at time", 1, querytime)
whichlabel = call(textgrid, "Get label of interval", 1, whichinterval)
value = pitch.get_value_at_time(querytime)
if not math.isnan(value):
if whichlabel == "sounding":
voicedcount += 1
voicedpeak.append(validtime[time])
timecorrection = originaldur / intensity_duration
call(textgrid, "Insert point tier", 1, "syllables")
for i in range(len(voicedpeak)):
position = (voicedpeak[i] * timecorrection)
call(textgrid, "Insert point", 1, position, "")
speakingrate = voicedcount / originaldur
# Handling division by zero for articulationrate
if speakingtot != 0:
articulationrate = voicedcount / speakingtot
else:
articulationrate = float('nan')
# Handling division by zero for asd
if voicedcount != 0:
asd = speakingtot / voicedcount
else:
asd = float('nan')
npause = npauses - 1
return voicedcount, npause, originaldur, intensity_duration, speakingrate, articulationrate, asd, total_pause_duration
|