Spaces:
Sleeping
Sleeping
File size: 2,418 Bytes
5bd622e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
entity_to_acronyms = {
'Activity': 'ACT',
'Administration': 'ADM',
'Age': 'AGE',
'Area': 'ARA',
'Biological_attribute': 'BAT',
'Biological_structure': 'BST',
'Clinical_event': 'CLE',
'Color': 'COL',
'Coreference': 'COR',
'Date': 'DAT',
'Detailed_description': 'DET',
'Diagnostic_procedure': 'DIA',
'Disease_disorder': 'DIS',
'Distance': 'DIS',
'Dosage': 'DOS',
'Duration': 'DUR',
'Family_history': 'FAM',
'Frequency': 'FRE',
'Height': 'HEI',
'History': 'HIS',
'Lab_value': 'LAB',
'Mass': 'MAS',
'Medication': 'MED',
'Nonbiological_location': 'NBL',
'Occupation': 'OCC',
'Other_entity': 'OTH',
'Other_event': 'OTE',
'Outcome': 'OUT',
'Personal_background': 'PER',
'Qualitative_concept': 'QUC',
'Quantitative_concept': 'QUC',
'Severity': 'SEV',
'Sex': 'SEX',
'Shape': 'SHA',
'Sign_symptom': 'SIG',
'Subject': 'SUB',
'Texture': 'TEX',
'Therapeutic_procedure': 'THP',
'Time': 'TIM',
'Volume': 'VOL',
'Weight': 'WEI'
}
index_to_label = {1: 'B-ACT',
2: 'B-ADM',
3: 'B-AGE',
4: 'B-ARA',
5: 'B-BAT',
6: 'B-BST',
7: 'B-CLE',
8: 'B-COL',
9: 'B-COR',
10: 'B-DAT',
11: 'B-DET',
12: 'B-DIA',
13: 'B-DIS',
14: 'B-DOS',
15: 'B-DUR',
16: 'B-FAM',
17: 'B-FRE',
18: 'B-HEI',
19: 'B-HIS',
20: 'B-LAB',
21: 'B-MAS',
22: 'B-MED',
23: 'B-NBL',
24: 'B-OCC',
25: 'B-OTE',
26: 'B-OTH',
27: 'B-OUT',
28: 'B-PER',
29: 'B-QUC',
30: 'B-SEV',
31: 'B-SEX',
32: 'B-SHA',
33: 'B-SIG',
34: 'B-SUB',
35: 'B-TEX',
36: 'B-THP',
37: 'B-TIM',
38: 'B-VOL',
39: 'B-WEI',
40: 'I-ACT',
41: 'I-ADM',
42: 'I-AGE',
43: 'I-ARA',
44: 'I-BAT',
45: 'I-BST',
46: 'I-CLE',
47: 'I-COL',
48: 'I-COR',
49: 'I-DAT',
50: 'I-DET',
51: 'I-DIA',
52: 'I-DIS',
53: 'I-DOS',
54: 'I-DUR',
55: 'I-FAM',
56: 'I-FRE',
57: 'I-HEI',
58: 'I-HIS',
59: 'I-LAB',
60: 'I-MAS',
61: 'I-MED',
62: 'I-NBL',
63: 'I-OCC',
64: 'I-OTE',
65: 'I-OTH',
66: 'I-OUT',
67: 'I-PER',
68: 'I-QUC',
69: 'I-SEV',
70: 'I-SHA',
71: 'I-SIG',
72: 'I-SUB',
73: 'I-TEX',
74: 'I-THP',
75: 'I-TIM',
76: 'I-VOL',
77: 'I-WEI',
78: 'O',
0: '<PAD>'}
MAX_LENGTH = 100
acronyms_to_entities = {v: k for k, v in entity_to_acronyms.items()}
models = {
"model_1": {
"path": "model/model_1.h5",
"title": "Bidirectional LSTM Model with single LSTM layer"
},
}
|