Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,8 @@ import shutil
|
|
7 |
import numpy as np
|
8 |
import torch
|
9 |
from datasets import load_dataset
|
10 |
-
from
|
|
|
11 |
from langchain_community.vectorstores import Chroma
|
12 |
from langchain.schema import Document
|
13 |
from sentence_transformers import SentenceTransformer
|
@@ -15,10 +16,13 @@ from sklearn.metrics import mean_squared_error, roc_auc_score
|
|
15 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
16 |
from sklearn.metrics.pairwise import cosine_similarity
|
17 |
|
|
|
18 |
# β
Load Pretrained Model
|
19 |
model_name = "bert-base-uncased"
|
20 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
-
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
|
|
|
|
|
22 |
embedding_model.client.to(device)
|
23 |
|
24 |
# β
Set OpenAI API Key (Replace with your own)
|
|
|
7 |
import numpy as np
|
8 |
import torch
|
9 |
from datasets import load_dataset
|
10 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings # β
Correct
|
11 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
12 |
from langchain_community.vectorstores import Chroma
|
13 |
from langchain.schema import Document
|
14 |
from sentence_transformers import SentenceTransformer
|
|
|
16 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
17 |
from sklearn.metrics.pairwise import cosine_similarity
|
18 |
|
19 |
+
|
20 |
# β
Load Pretrained Model
|
21 |
model_name = "bert-base-uncased"
|
22 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
23 |
+
#embedding_model = HuggingFaceEmbeddings(model_name=model_name)
|
24 |
+
embedding_model = HuggingFaceEmbeddings(model_name="models/bert-base-uncased")
|
25 |
+
|
26 |
embedding_model.client.to(device)
|
27 |
|
28 |
# β
Set OpenAI API Key (Replace with your own)
|