Gradio / app.py
ajalisatgi's picture
Update app.py
e4cfa32 verified
raw
history blame
3.96 kB
import torch
import gradio as gr
from langchain.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
import openai
import time
import logging
from datasets import load_dataset
from nltk.tokenize import sent_tokenize
import nltk
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize OpenAI API key
openai.api_key = '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' # Replace with your API key
# Download NLTK data
nltk.download('punkt')
# Initialize models and configurations
model_name = 'intfloat/e5-small'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
embedding_model.client.to(device)
# Initialize Chroma with existing database
vectordb = Chroma(
persist_directory='./docs/chroma/',
embedding_function=embedding_model
)
def process_query(query):
try:
logger.info(f"Processing query: {query}")
# Get relevant documents
relevant_docs = vectordb.similarity_search(query, k=30)
context = " ".join([doc.page_content for doc in relevant_docs])
# Add delay to respect API rate limits
time.sleep(1)
# Generate response using OpenAI
response = openai.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": f"Given the document: {context}\n\nGenerate a response to the query: {query}"}
],
max_tokens=300,
temperature=0.7,
)
answer = response.choices[0].message.content.strip()
logger.info("Successfully generated response")
# Extract and display metrics
metrics = extract_metrics(query, answer, relevant_docs)
return answer, metrics
except Exception as e:
logger.error(f"Error processing query: {str(e)}")
return f"Error: {str(e)}", "Metrics unavailable"
def extract_metrics(query, response, relevant_docs):
try:
context = " ".join([doc.page_content for doc in relevant_docs])
metrics_prompt = f"""
Question: {query}
Context: {context}
Response: {response}
Extract metrics for:
- Context Relevance
- Context Utilization
- Completeness
- Response Quality
"""
metrics_response = openai.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": metrics_prompt}],
max_tokens=150,
temperature=0.7,
)
return metrics_response.choices[0].message.content.strip()
except Exception as e:
return "Metrics calculation failed"
# Create Gradio interface
demo = gr.Interface(
fn=process_query,
inputs=[
gr.Textbox(
label="Enter your question",
placeholder="Type your question here...",
lines=2
)
],
outputs=[
gr.Textbox(label="Answer", lines=5),
gr.Textbox(label="Metrics", lines=4)
],
title="RAG-Powered Question Answering System",
description="Ask questions and get answers based on the embedded document knowledge.",
examples=[
["What role does T-cell count play in severe human adenovirus type 55 (HAdV-55) infection?"],
["In what school district is Governor John R. Rogers High School located?"],
["Is there a functional neural correlate of individual differences in cardiovascular reactivity?"],
["How do I select Natural mode?"]
]
)
# Launch with debugging enabled
if __name__ == "__main__":
demo.launch(debug=True)